Review of Recent Progress in Antimony Chalcogenide-Based Solar Cells: Materials and Devices

被引:219
作者
Lei, Hongwei [1 ,2 ]
Chen, Jianjun [1 ,2 ]
Tan, Zuojun [1 ,2 ]
Fang, Guojia [3 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[2] Huazhong Agr Univ, Inst Appl Phys, Wuhan 430070, Hubei, Peoples R China
[3] Wuhan Univ, Sch Phys & Technol, Minist Educ China, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Hubei, Peoples R China
关键词
materials; Sb2S3; Sb2Se3; Sb-2(SxSe1-x)(3); solar cells; SB2SE3; THIN-FILM; LOW-COST TECHNIQUE; DEPOSITION; EFFICIENCY; PERFORMANCE; ABSORBER; LAYER; TIO2; TEMPERATURE; PHOTOVOLTAICS;
D O I
10.1002/solr.201900026
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Antimony chalcogenides such as Sb2S3, Sb2Se3, and Sb-2(SxSe1-x)(3) have emerged as very promising alternative solar absorber materials due to their high stability, abundant elemental storage, nontoxicity, low-cost, suitable tunable bandgap, and high absorption coefficient. Remarkable achievements have been made in antimony chalcogenide solar cells in the past few decades, with the power conversion efficiency (PCE) currently reaching 9.2%, which is close to the PCE level required for industrial applications. To facilitate the realization of highly efficient antimony chalcogenide solar cells in the future, a comprehensive review of antimony chalcogenide-based materials and photovoltaic devices is presented. First, the fundamental physical properties and preparation methods of antimony chalcogenide-based materials are outlined, and then, notable recent developments in antimony chalcogenide-based photovoltaic devices with various architectures are highlighted. Finally, the most prominent limitations are described, and approaches to achieving remarkable advances in antimony chalcogenide solar cells in the future are provided.
引用
收藏
页数:27
相关论文
共 124 条
[81]   LOW-COST TECHNIQUE FOR PREPARING N-SB2S3-P-SI HETEROJUNCTION SOLAR-CELLS [J].
SAVADOGO, O ;
MANDAL, KC .
APPLIED PHYSICS LETTERS, 1993, 63 (02) :228-230
[82]   Mechanisms and modification of nonlinear shunt leakage in Sb2Se3 thin film solar cells [J].
Shen, Kai ;
Ou, Chizhu ;
Huang, Tailang ;
Zhu, Hongbing ;
Li, Jianjun ;
Li, Zhiqiang ;
Mai, Yaohua .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 186 :58-65
[83]   Vacuum assisted solution processing for highly efficient Sb2S3 solar cells [J].
Tang, Rongfeng ;
Wang, Xiaomin ;
Jiang, Chenhui ;
Li, Shiang ;
Jiang, Guoshun ;
Yang, Shangfeng ;
Zhu, Changfei ;
Chen, Tao .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (34) :16322-16327
[84]   n-Type Doping of Sb2S3 Light-Harvesting Films Enabling High-Efficiency Planar Heterojunction Solar Cells [J].
Tang, Rongfeng ;
Wang, Xiaomin ;
Jiang, Chenhui ;
Li, Shiang ;
Liu, Weifeng ;
Ju, Huanxin ;
Yang, Shangfeng ;
Zhu, Changfei ;
Chen, Tao .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36) :30314-30321
[85]  
Thalia J., 2018, J PHYS D, V51
[86]   Versatile and Low-Toxic Solution Approach to Binary, Ternary, and Quaternary Metal Sulfide Thin Films and Its Application in Cu2ZnSn(S,Se)4 Solar Cells [J].
Tian, Qingwen ;
Wang, Gang ;
Zhao, Wangen ;
Chen, Yanyan ;
Yang, Yanchun ;
Huang, Lijian ;
Pan, Daocheng .
CHEMISTRY OF MATERIALS, 2014, 26 (10) :3098-3103
[87]   Mechanochemical bulk synthesis and e-beam growth of thin films of Sb2Se3 photovoltaic absorber [J].
Tiwari, Kunal J. ;
Ren, Min-Qin ;
Vajandar, Saumitra Kamalakar ;
Osipowicz, Thomas ;
Subrahmanyam, A. ;
Malar, P. .
SOLAR ENERGY, 2018, 160 :56-63
[88]   Unraveling the Native Conduction of Trichalcogenides and Its Ideal Band Alignment for New Photovoltaic Interfaces [J].
Tumelero, Milton A. ;
Faccio, Ricardo ;
Pasa, Andre A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (03) :1390-1399
[89]   Progress in solar PV technology: Research and achievement [J].
Tyagi, V. V. ;
Rahim, Nurul A. A. ;
Rahim, N. A. ;
Selvaraj, Jeyraj A. L. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 20 :443-461
[90]  
Valentina J., 2016, PROG PHOTOVOLTAICS, V24, P704