Review of Recent Progress in Antimony Chalcogenide-Based Solar Cells: Materials and Devices

被引:219
作者
Lei, Hongwei [1 ,2 ]
Chen, Jianjun [1 ,2 ]
Tan, Zuojun [1 ,2 ]
Fang, Guojia [3 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[2] Huazhong Agr Univ, Inst Appl Phys, Wuhan 430070, Hubei, Peoples R China
[3] Wuhan Univ, Sch Phys & Technol, Minist Educ China, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Hubei, Peoples R China
关键词
materials; Sb2S3; Sb2Se3; Sb-2(SxSe1-x)(3); solar cells; SB2SE3; THIN-FILM; LOW-COST TECHNIQUE; DEPOSITION; EFFICIENCY; PERFORMANCE; ABSORBER; LAYER; TIO2; TEMPERATURE; PHOTOVOLTAICS;
D O I
10.1002/solr.201900026
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Antimony chalcogenides such as Sb2S3, Sb2Se3, and Sb-2(SxSe1-x)(3) have emerged as very promising alternative solar absorber materials due to their high stability, abundant elemental storage, nontoxicity, low-cost, suitable tunable bandgap, and high absorption coefficient. Remarkable achievements have been made in antimony chalcogenide solar cells in the past few decades, with the power conversion efficiency (PCE) currently reaching 9.2%, which is close to the PCE level required for industrial applications. To facilitate the realization of highly efficient antimony chalcogenide solar cells in the future, a comprehensive review of antimony chalcogenide-based materials and photovoltaic devices is presented. First, the fundamental physical properties and preparation methods of antimony chalcogenide-based materials are outlined, and then, notable recent developments in antimony chalcogenide-based photovoltaic devices with various architectures are highlighted. Finally, the most prominent limitations are described, and approaches to achieving remarkable advances in antimony chalcogenide solar cells in the future are provided.
引用
收藏
页数:27
相关论文
共 124 条
[1]   Colloidal Sb2S3 nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells [J].
Abulikemu, Mutalifu ;
Del Gobbo, Silvano ;
Anjum, Dalaver H. ;
Malik, Mohammad Azad ;
Bakr, Osman M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (18) :6809-6814
[2]   Multimodal characterization of solution-processed Cu3SbS4 absorbers for thin film solar cells [J].
Albuquerque, Gustavo H. ;
Kim, Ki-Joong ;
Lopez, Jonathon I. ;
Devaraj, Arun ;
Manandhar, Sandeep ;
Liu, Yi-Sheng ;
Guo, Jinghua ;
Chang, Chih-Hung ;
Herman, Gregory S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (18) :8682-8692
[3]   Influence of the electron buffer layer on the photovoltaic performance of planar Sb2(SxSe1-x)3 solar cells [J].
Andres Jaramillo-Quintero, Oscar ;
Elizabeth Rincon, Marina ;
Vasquez-Garcia, Geovanni ;
Nair, P. K. .
PROGRESS IN PHOTOVOLTAICS, 2018, 26 (09) :709-717
[4]   Solution Processed Polymer-Inorganic Semiconductor Solar Cells Employing Sb2S3 as a Light Harvesting and Electron Transporting Material [J].
Bansal, Neha ;
O'Mahony, Flannan T. F. ;
Lutz, Thierry ;
Haque, Saif A. .
ADVANCED ENERGY MATERIALS, 2013, 3 (08) :986-990
[5]   A PHOTO-ELECTROCHEMICAL CELL BASED ON CHEMICALLY DEPOSITED SB2SE3 THIN-FILM ELECTRODE AND DEPENDENCE OF DEPOSITION ON VARIOUS PARAMETERS [J].
BHATTACHARYA, RN ;
PRAMANIK, P .
SOLAR ENERGY MATERIALS, 1982, 6 (03) :317-322
[6]   Hole Transport and Recombination in All-Solid Sb2S3-Sensitized TiO2 Solar Cells Using CuSCN As Hole Transporter [J].
Boix, Pablo P. ;
Larramona, Gerardo ;
Jacob, Alain ;
Delatouche, Bruno ;
Mora-Sero, Ivan ;
Bisquert, Juan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (01) :1579-1587
[7]   From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells [J].
Boix, Pablo P. ;
Lee, Yong Hui ;
Fabregat-Santiago, Francisco ;
Im, Sang Hyuk ;
Mora-Sero, Ivan ;
Bisquert, Juan ;
Seok, Sang Il .
ACS NANO, 2012, 6 (01) :873-880
[8]   SPACE-CHARGE-LIMITED CURRENTS IN VITREOUS ANTIMONY TRISULFIDE FILMS [J].
BUDINAS, T ;
MACKUS, P ;
SMILGA, A ;
VISCAKAS, J .
PHYSICA STATUS SOLIDI, 1969, 31 (01) :375-&
[9]  
Chan C. Y., 2014, ADV FUNCT MATER, V24, P3587
[10]  
Chan C. Y., 2015, ADV FUNCT MATER, V25, P2892