2D Nanostructures of CoFe2O4 and NiFe2O4: Efficient Oxygen Evolution Catalyst

被引:146
作者
Mahala, Chavi [1 ]
Sharma, Mamta Devi [1 ]
Basu, Mrinmoyee [1 ]
机构
[1] BITS Pilani, Dept Chem, Pilani 333031, Rajasthan, India
关键词
NiFe2O4; CoFe2O4; Nanosheet; Nanoplate; Oxygen evolution reaction; BIFUNCTIONAL ELECTROCATALYST; CARBON NANOTUBES; WATER OXIDATION; HOLLOW NANOSPHERES; SUPPORTED COFE2O4; FACILE SYNTHESIS; DOUBLE-HYDROXIDE; NANOPARTICLES; NI; REDUCTION;
D O I
10.1016/j.electacta.2018.04.079
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Development of cost-effective, efficient electrocatalyst for oxygen evolution reaction (OER) is a challenging issue as OER has sluggish reaction kinetics due to transfer of multi-electrons. In this study, a new strategy has been developed for the synthesis of 2D nanostructures of CoFe2O4 and NiFe2O4 following a wet-chemical route followed by calcination. Following this method nanoplates of CoFe2O4 and nano-sheets of NiFe2O4 have been successfully synthesized. These interconnected 2D structures are very efficient for oxygen evolution reaction and it is observed that CoFe2O4 nanoplates and NiFe2O4 nanosheets are catalytically more active compared to nanocubes and nanobipyramids of CoFe2O4 and NiFe2O4. CoFe2O4 nanoplates require only 1.64 V vs. RHE for generating current density of 10 mA/cm(2) whereas nanocubes of CoFe2O4 require 1.68 V vs. RHE. Similarly, NiFe2O4 nanosheets require 1.69 V to generate current density 10 mA/cm(2) and NiFe2O4 nanobipyramids require 1.77 V vs. RHE to engender 10 mA/cm(2) current density. 2D sheet or Plate-like structure with more exposed surface atoms faces more electrolyte to adsorb and react which results in higher electrocatalytic activity. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:462 / 473
页数:12
相关论文
共 52 条
[1]   Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power [J].
Ahlawat, Anju ;
Sathe, V. G. .
JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (05) :1087-1094
[2]   Effect of Cetyl trimethylammonium bromide (CTAB) amount on phase constituents and magnetic properties of nano-sized NiFe2O4 powders synthesized by sol-gel auto-combustion method [J].
Alamolhoda, S. ;
Mirkazemi, S. M. ;
Shahjooyi, T. ;
Benvidi, N. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 638 :121-126
[3]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[4]   Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation [J].
Bao, Jian ;
Zhang, Xiaodong ;
Fan, Bo ;
Zhang, Jiajia ;
Zhou, Min ;
Yang, Wenlong ;
Hu, Xin ;
Wang, Hui ;
Pan, Bicai ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) :7399-7404
[5]  
Bard A. J., 2004, ELECTROCHEMICAL METH, V2nd
[6]   Ag2S/Ag Heterostructure: A Promising Electrocatalyst for the Hydrogen Evolution Reaction [J].
Basu, Mrinmoyee ;
Nazir, Roshan ;
Mahala, Chavi ;
Fageria, Pragati ;
Chaudhary, Sumita ;
Gangopadhyay, Subhashis ;
Pande, Surojit .
LANGMUIR, 2017, 33 (13) :3178-3186
[7]   Cation distribution and particle size effect on Raman spectrum of CoFe2O4 [J].
Chandramohan, P. ;
Srinivasan, M. P. ;
Velmurugan, S. ;
Narasimhan, S. V. .
JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (01) :89-96
[8]   Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction [J].
Chauhan, Meenakshi ;
Reddy, Kasala Prabhakar ;
Gopinath, Chinnakonda S. ;
Deka, Sasanka .
ACS CATALYSIS, 2017, 7 (09) :5871-5879
[9]   Hierarchical NiCo2O4 nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation [J].
Cheng, Hui ;
Su, Yu-Zhi ;
Kuang, Pan-Yong ;
Chen, Gao-Feng ;
Liu, Zhao-Qing .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) :19314-19321
[10]   Effect of temperature on the activities and stabilities of hydrothermally prepared IrOx nanocatalyst layers for the oxygen evolution reaction [J].
da Silva, Gabriel C. ;
Perini, Nickson ;
Ticianelli, Edson A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 218 :287-297