Dynamic cohesive fracture: Models and analysis

被引:6
|
作者
Larsen, Christopher J. [1 ]
Slastikov, Valeriy [2 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会; 欧洲研究理事会;
关键词
Fracture; dynamics; stationary action; maximal dissipation; STATIC CRACK-GROWTH; BRITTLE-FRACTURE; GRIFFITHS CRITERION; EXISTENCE; MINIMIZATION; EVOLUTION;
D O I
10.1142/S0218202514500092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our goal in this paper is to initiate a mathematical study of dynamic cohesive fracture. Mathematical models of static cohesive fracture are quite well understood, and existence of solutions is known to rest on properties of the cohesive energy density psi, which is a function of the jump in displacement. In particular, a relaxation is required (and a relaxation formula is known) if psi' (0(+)) not equal infinity. However, formulating a model for dynamic fracture when psi' (0(+)) = infinity is not straightforward, compared to when psi' (0(+)) is finite, and especially compared to when psi is smooth. We therefore formulate a model that is suitable when psi' (0(+)) = infinity and also agrees with established models in the more regular case. We then analyze the one-dimensional case and show existence when a finite number of potential fracture points are specified a priori, independent of the regularity of psi. We also show that if psi' (0(+)) < infinity, then relaxation is necessary without this constraint, at least for some initial data.
引用
收藏
页码:1857 / 1875
页数:19
相关论文
共 50 条
  • [1] An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture
    Gupta, Abhinav
    Krishnan, U. Meenu
    Mandal, Tushar Kanti
    Chowdhury, Rajib
    Vinh Phu Nguyen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 399
  • [2] Phase field approximation of cohesive fracture models
    Conti, S.
    Focardi, M.
    Iurlano, F.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (04): : 1033 - 1067
  • [3] Adaptive hierarchical refinement of NURBS in cohesive fracture analysis
    Chen, Lin
    Lingen, Erik Jan
    de Borst, Rene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (13) : 2151 - 2173
  • [4] A phase-field formulation for dynamic cohesive fracture
    Geelen, Rudy J. M.
    Liu, Yingjie
    Hu, Tianchen
    Tupek, Michael R.
    Dolbow, John E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 348 : 680 - 711
  • [5] Dynamic fracture of functionally graded composites using an intrinsic cohesive zone model
    Paulino, GH
    Zhang, ZY
    FUNCTIONALLY GRADED MATERIALS VIII, 2005, 492-493 : 447 - 452
  • [6] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    Meccanica, 2014, 49 : 2587 - 2601
  • [7] Modelling of fracture by cohesive force models: A path to pursue
    Marigo, Jean-Jacques
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 102
  • [8] An extrinsic cohesive shell model for dynamic fracture analyses
    Wang, Di
    Xu, Wei
    Chen, Shunhua
    Zang, Mengyan
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2018, 97 : 165 - 176
  • [9] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [10] Dynamic formulation of phase field fracture in heterogeneous media with finite thickness cohesive interfaces
    Corrado, Mauro
    Paggi, Marco
    Reinoso, Jose
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 205