Fast and Reliable Estimation of Composite Load Model Parameters Using Analytical Similarity of Parameter Sensitivity

被引:43
作者
Kim, Jae-Kyeong [1 ]
An, Kyungsung [1 ]
Ma, Jin [3 ]
Shin, Jeonghoon [4 ]
Song, Kyung-Bin [5 ]
Park, Jung-Do [6 ]
Park, Jung-Wook [1 ]
Hur, Kyeon [1 ,2 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120149, South Korea
[2] King Saud Univ, Riyadh 11451, Saudi Arabia
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[4] Korea Elect Power Res Inst, Power Syst Lab, KEPCO, Daejeon 305380, South Korea
[5] Soongsil Univ, Dept Elect Engn, Seoul 156743, South Korea
[6] Uiduk Univ, Div Energy & Elect Engn, Gyeongju 780713, Gyeongsangbuk D, South Korea
基金
新加坡国家研究基金会;
关键词
Composite load model; dynamic load modeling; measurement-based approach; optimization; parameter sensitivity; power system stability; ALGORITHM;
D O I
10.1109/TPWRS.2015.2409116
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a computationally efficient technique for estimating the composite load model parameters based on analytical similarity of parameter sensitivity. When the model parameters are updated in the optimization procedure to best fit the actual load dynamics, i.e., measurements, parameters of similar sensitivity representation in the given mathematical model structure are updated in the same manner at every iterative step. This research allows for practically reducing the number of load model parameters to be identified in the estimation process and the overall computational cost while preserving the desired complexity and accuracy of the original model. This approach consequently facilitates the parameter estimation in the optimization process and helps manage increased number of parameters often criticized for adopting the dynamic composite load model via measurement-based approach. Case studies for the real power system demonstrate the computational efficiency and intact accuracy of the proposed method with reference to the existing methods of estimating all the parameters of the given composite load model independently.
引用
收藏
页码:663 / 671
页数:9
相关论文
共 27 条
[2]  
[Anonymous], 2006, Time series analysis
[3]   A Novel Parameter Identification Approach via Hybrid Learning for Aggregate Load Modeling [J].
Bai, Hua ;
Zhang, Pei ;
Ajjarapu, Venkataramana .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (03) :1145-1154
[4]  
Chapman S., 2005, ELECT MACHINERY FUND
[5]   Measurement-based dynamic load models: Derivation, comparison, and validation [J].
Choi, Byoung-Kon ;
Chiang, Hsiao-Dong ;
Li, Yinhong ;
Li, Hua ;
Chen, Yung-Tien ;
Huang, Der-Hua ;
Lauby, Mark G. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (03) :1276-1283
[6]  
Choi Byoung-Kon, 2006, Journal of Electrical Engineering & Technology, V1, P161
[7]   Hybrid PSO-Complex Algorithm Based Parameter Identification for a Composite Load Model [J].
Del Castillo, Manuelito Y., Jr. ;
Song, Hwachang ;
Lee, Byongjun .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2013, 8 (03) :464-471
[8]   ALGORITHMS FOR SOLUTION OF NON-LINEAR LEAST-SQUARES PROBLEM [J].
GILL, PE ;
MURRAY, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (05) :977-992
[9]   Composite load modeling via measurement approach [J].
He, RM ;
Ma, J ;
Hill, DJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (02) :663-672
[10]   Sensitivity, approximation, and uncertainty in power system dynamic simulation [J].
Hiskens, Ian A. ;
Alseddiqui, Jassim .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (04) :1808-1820