Tuning charge transport in organic semiconductors with nanoparticles and hexamethyldisilazane

被引:11
作者
He, Zhengran [1 ]
Zhang, Ziyang [2 ]
Bi, Sheng [3 ]
Chen, Jihua [4 ]
机构
[1] Univ Alabama, Dept Elect & Comp Engn, Tuscaloosa, AL 35487 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[3] Dalian Univ Technol Dalian, Minist Educ, Key Lab Precis & Nontradit Machining Technol, Dalian 116024, Liaoning, Peoples R China
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
关键词
TIPS pentacene; Nanoparticles; Hexamethyldisilazane treatment; Thin film morphology; Organic thin film transistors;
D O I
10.1007/s11051-021-05151-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we showcase the use of silicon dioxide (SiO2) nanoparticles and hexamethyldisilazane (HMDS) treatment to regulate the thin film morphology and manipulate charge transport of solution-processed, small-molecular, organic semiconductors. 6,13-Bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) was blended with SiO2 nanoparticles as an exemplary organic semiconductor. A higher concentration of SiO2 nanoparticles were observed near the edge of TIPS pentacene crystals and enlarged the width of crystal edges. This greatly reduced the dendritic crystal growth pattern of TIPS pentacene and contributed to its enhanced orientation uniformity. In addition, the HMDS treatment effectively passivated the silanol groups on the hydrophilic gate dielectrics. As a result, bottom-gate, top-contact TIPS pentacene/SiO2 nanoparticle-based organic thin-film transistors boosted a performance consistency enhancement (defined by the ratio of average mobility to the standard deviation of mobility). The combinational approach to employ SiO2 nanoparticles and HMDS treatment as demonstrated in this work sheds light on important applications in high-performance organic electronics devices on flexible substrate.
引用
收藏
页数:12
相关论文
共 74 条
[1]   Fractal analysis of inter-particle interaction forces in gold nanoparticle aggregates [J].
Abdellatif, M. H. ;
Abdelrasoul, G. N. ;
Salerno, M. ;
Liakos, I. ;
Scarpellini, A. ;
Marras, S. ;
Diaspro, A. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 497 :225-232
[2]   Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics [J].
Abdellatif, M. H. ;
Abdelrasoul, G. N. ;
Scarpellini, A. ;
Marras, S. ;
Diaspro, A. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 458 :266-272
[3]   TIPS-pentacene crystalline thin film growth [J].
Akkerman, Hylke B. ;
Li, Hanying ;
Bao, Zhenan .
ORGANIC ELECTRONICS, 2012, 13 (10) :2056-2062
[4]   Fabrication, characterization, and electrical measurements of gas ammonia sensor based on organic field effect transistor [J].
Amer, K. ;
Elshaer, A. M. ;
Anas, M. ;
Ebrahim, S. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (01) :391-400
[5]  
[Anonymous], 2019, APPL NANOSCI
[6]   High Performance and Efficiency Resonant Photo-Effect-Transistor by Near-Field Nano-Strip-Controlled Organic Light Emitting Diode Gate [J].
Asare-Yeboah, Kyeiwaa ;
Li, Qikun ;
Jiang, Chengming ;
He, Zhengran ;
Bi, Sheng ;
Liu, Yun ;
Liu, Chuan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (16) :6526-6534
[7]   Temperature gradient controlled crystal growth from TIPS pentacene-poly(α-methyl styrene) blends for improving performance of organic thin film transistors [J].
Asare-Yeboah, Kyeiwaa ;
Bi, Sheng ;
He, Zhengran ;
Li, Dawen .
ORGANIC ELECTRONICS, 2016, 32 :195-199
[8]   Blending effect of 6,13-bis (triisopropylsilylethynyl) pentacene-graphene composite layers for flexible thin film transistors with a polymer gate dielectric [J].
Basu, Sarbani ;
Adriyanto, Feri ;
Wang, Yeong-Her .
NANOTECHNOLOGY, 2014, 25 (08)
[9]   Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel [J].
Bi, Sheng ;
Li, Qikun ;
He, Zhengran ;
Guo, Qinglei ;
Asare-Yeboah, Kyeiwaa ;
Liu, Yun ;
Jiang, Chengming .
NANO ENERGY, 2019, 66
[10]   Layer-dependent anisotropic frictional behavior in two-dimensional monolayer hybrid perovskite/ITO layered heterojunctions [J].
Bi, Sheng ;
Li, Qikun ;
Yan, Ying ;
Asare-Yeboah, Kyeiwaa ;
Ma, Tianbao ;
Tang, Chaolong ;
Ouyang, Zhongliang ;
He, Zhengran ;
Liu, Yun ;
Jiang, Chengming .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (05) :2540-2546