Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation

被引:20
作者
Baleanu, Dumitru [1 ,2 ]
Inc, Mustafa [3 ]
Yusuf, Abdullahi [3 ]
Aliyu, Aliyu Isa [3 ]
机构
[1] Cankaya Univ, Dept Math, TR-1406530 Ankara, Turkey
[2] Inst Space Sci, Bucharest, Romania
[3] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
关键词
GSWW; optimal system; Cls; infinitesimal generators; NSA; ORBITAL ANGULAR-MOMENTUM; SOLITON-SOLUTIONS; SYMMETRY;
D O I
10.1515/phys-2018-0049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, the generalized shallow water wave (GSWW) equation is studied from the perspective of one dimensional optimal systems and their conservation laws (Cls). Some reduction and a new exact solution are obtained from known solutions to one dimensional optimal systems. Some of the solutions obtained involve expressions with Bessel function and Airy function [1-3]. The GSWW is a nonlinear self-adjoint (NSA) with the suitable differential substitution, Cls are constructed using the new conservation theorem.
引用
收藏
页码:364 / 370
页数:7
相关论文
共 37 条
[1]  
[Anonymous], 2010, ARCH ALGA
[2]   New exact solutions of a generalized shallow water wave equation [J].
Bagchi, Bijan ;
Das, Supratim ;
Ganguly, Asish .
PHYSICA SCRIPTA, 2010, 82 (02)
[3]   Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects [J].
Berkhout, Gregorius C. G. ;
Beijersbergen, Marco W. .
PHYSICAL REVIEW LETTERS, 2008, 101 (10)
[4]  
Bilby B. A., 1985, FUNDAMENTALS DEFORMA
[5]  
Biswas A, 2014, P ROMANIAN ACAD A, V15, P123
[6]   1-Soliton solution and conservation laws of the generalized Dullin-Gottwald-Holm equation [J].
Biswas, Anjan ;
Kara, A. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) :929-932
[7]   A symmetry analysis of some classes of evolutionary nonlinear (2+1)-diffusion equations with variable diffusivity [J].
Bokhari, Ashfaque H. ;
Al Dweik, Ahmad Y. ;
Kara, A. H. ;
Zaman, F. D. .
NONLINEAR DYNAMICS, 2010, 62 (1-2) :127-138
[8]  
Dimas S., 2004, Proceedings of the 10th international conference in modern group analysis, P64
[9]   Soliton solutions and conservation laws of the Gilson-Pickering equation [J].
Ebadi, Ghodrat ;
Kara, A. H. ;
Petkovic, Marko D. ;
Biswas, Anjan .
WAVES IN RANDOM AND COMPLEX MEDIA, 2011, 21 (02) :378-385
[10]   Photon orbital angular momentum in astronomy [J].
Elias, N. M., II .
ASTRONOMY & ASTROPHYSICS, 2008, 492 (03) :883-922