Mittag-Leffler functions, lp n-balls and geometric pairings

被引:1
作者
Guardiola Muzquiz, Gorka [1 ]
机构
[1] Rey Juan Carlos Univ, Dept Signal Theory Commun Telemat Syst & Computat, Madrid, Spain
关键词
Generalized Mittag-Leffler function; groups; integral transforms; real analysis on measure chains; hypergeometric functions;
D O I
10.1080/10652469.2016.1267730
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the relation between the Mittag-Leffler functions and the sum of the hypervolume of generalized l(p) n-balls. We derive from this result some simple properties of the Mittag-Leffler functions. We also define some new Abelian groups from the sum and the multiplication as well as the Pontryagin transform associated to them. We relate this approach to the calculus on measure chains.
引用
收藏
页码:195 / 211
页数:17
相关论文
共 26 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
[Anonymous], J APPL MATH COMPUT
[3]  
[Anonymous], INTRO ANAL
[4]  
[Anonymous], INTEGRAL TRANSFORMS
[5]  
AULBACH B, 1990, COLLOQ MATH SOC J B, V53, P37
[6]   The polynomial of Mittag Leffler [J].
Bateman, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1940, 26 :491-496
[7]  
Bayat M, 2007, ELECTRON J LINEAR AL, V16, P125
[8]  
Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
[9]  
Coxeter H. S. M., 1963, REGULAR POLYTOPES
[10]  
ERDELYI A., 1981, Higher transcendental functions, VIII