HYERS-ULAM STABILITY FOR LINEAR QUATERNION-VALUED DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENT

被引:11
作者
Chen, Dan [1 ]
Feckan, Michal [2 ]
Wang, JinRong [1 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang, Peoples R China
[2] Comenius Univ, Dept Math Anal & Numer Math, Bratislava, Slovakia
基金
中国国家自然科学基金;
关键词
Hyers-Ulam stability; linear quaternion-valued differential equations; LAPLACE TRANSFORM; EULER;
D O I
10.1216/rmj.2022.52.1237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hyers-Ulam stability for linear differential equations in the sense of quaternion-valued framework. This shows that Laplace transformation is also valid for finding the approximate solution for linear quaternion-valued differential equations.
引用
收藏
页码:1237 / 1250
页数:14
相关论文
共 15 条
[1]   Laplace transform: a new approach in solving linear quaternion differential equations [J].
Cai, Zhen-Feng ;
Kou, Kit Ian .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (11) :4033-4048
[2]   On the Stability of Linear Quaternion-Valued Differential Equations [J].
Chen, Dan ;
Feckan, Michal ;
Wang, JinRong .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (01)
[3]   QUATERNION KINEMATIC AND DYNAMIC DIFFERENTIAL-EQUATIONS [J].
CHOU, JCK .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1992, 8 (01) :53-64
[4]   Zeros of Regular Functions and Polynomials of a Quaternionic Variable [J].
Gentili, Graziano ;
Stoppato, Caterina .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 56 (03) :655-667
[5]   Quaternions and particle dynamics in the Euler fluid equations [J].
Gibbon, J. D. ;
Holm, D. D. ;
Kerr, R. M. ;
Roulstone, I. .
NONLINEARITY, 2006, 19 (08) :1969-1983
[6]   A quaternionic structure in the three-dimensional Euler and ideal magneto-hydrodynamics equations [J].
Gibbon, JD .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 166 (1-2) :17-28
[7]   QUATERNION FRAME APPROACH TO STREAMLINE VISUALIZATION [J].
HANSON, AJ ;
MA, H .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1995, 1 (02) :164-174
[8]   Solve the linear quaternion-valued differential equations having multiple eigenvalues [J].
Kou, Kit Ian ;
Liu, Wan-Kai ;
Xia, Yong-Hui .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (02)
[9]   Linear Quaternion Differential Equations: Basic Theory and Fundamental Results [J].
Kou, Kit Ian ;
Xia, Yong-Hui .
STUDIES IN APPLIED MATHEMATICS, 2018, 141 (01) :3-45
[10]  
Kyrchei I, 2018, Arxiv, DOI arXiv:1812.03397