Seasonal variations in N2 and N2O emissions from a wheat-maize cropping system

被引:20
|
作者
Chen, Tuo [1 ,2 ]
Oenema, Oene [3 ]
Li, Jiazhen [1 ,2 ]
Misselbrook, Tom [4 ]
Dong, Wenxu [1 ]
Qin, Shuping [5 ]
Yuan, Haijing [5 ]
Li, Xiaoxin [1 ]
Hu, Chunsheng [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Agr Resources Res, Key Lab Agr Water Resources,Hebei Lab Soil Ecol, 286 Huaizhong Rd, Shijiazhuang 050021, Hebei, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] Wageningen Univ & Res, Wageningen Environm Res, NL-6700 AA Wageningen, Netherlands
[4] Rothamsted Res, Okehampton EX20 2SB, Devon, England
[5] Fujian Agr & Forestry Univ, Coll Resources & Environm, Fuzhou 350002, Peoples R China
基金
英国生物技术与生命科学研究理事会; 中国国家自然科学基金; 国家重点研发计划;
关键词
N-2; flux; Nitrogen balance; N2O ratio; Missing nitrogen; Denitrification; NITROUS-OXIDE EMISSIONS; SOIL-WATER CONTENT; MEASURING DENITRIFICATION; MICROBIAL COMMUNITIES; GRASSLAND SOIL; NITRATE; FERTILIZER; FLUXES; DINITROGEN; MOISTURE;
D O I
10.1007/s00374-019-01373-8
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The N losses via denitrification and the N-2/N2O emission ratio are highly uncertain, mainly due to methodological difficulties concerning measurement of N-2 emissions. Here, we report on seasonal measurements of N2O and N-2 emissions from the top soil of a winter wheat-summer maize double-cropping system in the North China Plain. A novel double cylinder soil core method was used to measure N2O and N-2 fluxes in situ from a 20-year field experiment with four N fertilizer treatments (0, 200, 400, and 600kgNha(-1)year(-1)) and 16 sampling occasions over a 1-year period. The N-2-free helium-oxygen atmosphere in the inter-layer between the two cylinders acted as a buffer against N-2 diffusion from the atmosphere into the soil core. Total N2O emissions were 0.44, 1.31, 2.19, and 2.23kgNha(-1)year(-1), and total N-2 emissions were 8.3, 20.0, 22.5, and 24.7kgNha(-1)year(-1) from the N0, N200, N400, and N600 treatments, respectively. The N-2/N2O emission ratio ranged from 2 to 136, indicating that N-2 was the dominant gas. The N-2/N2O ratio was much higher in summer than in winter, and was inversely related to fertilizer N application. Fluxes of N-2 were statistically related to soil temperature and concentrations of NO3--N and DOC in soil extracts, while N2O fluxes were related to soil water content and concentrations of NO3--N and exchangeable NH4+ in soil extracts. The N-2/N2O ratio was related to soil temperature and exchangeable NH4+ and NO3--N concentrations. Our study provides new insights on variations of the N-2/N2O emission ratio in agroecosystems, and shows the importance of seasonal measurements.
引用
收藏
页码:539 / 551
页数:13
相关论文
共 50 条
  • [41] Subsoils:: chemo- and biological denitrification, N2O and N2 emissions
    van Cleemput, O
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1998, 52 (2-3) : 187 - 194
  • [42] A new incubation system to simultaneously measure n2 as well as n2o and co2 fluxes from plant-soil mesocosms
    Yankelzon, Irina
    Willibald, Georg
    Dannenmann, Michael
    Malique, Francois
    Ostler, Ulrike
    Scheer, Clemens
    Butterbach-Bahl, Klaus
    BIOLOGY AND FERTILITY OF SOILS, 2025, 61 (03) : 401 - 419
  • [43] δ15N-N2O signatures in response to N fertilization in a wheat-maize rotation
    Wang, Yuying
    Dong, Wenxu
    Zhang, Yuming
    Li, Xiaoxin
    Luo, Jiafa
    Hu, Chunsheng
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2021, 119 (03) : 369 - 387
  • [44] Spatial Variations of Soil N2 and N2O Emissions from a Temperate Forest: Quantified by the In Situ 15N Labeling Method
    Xi, Dan
    Fang, Yunting
    Zhu, Weixing
    FORESTS, 2022, 13 (09):
  • [45] Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation
    Shuping Qin
    Keren Ding
    Tim J. Clough
    Chunsheng Hu
    Jiafa Luo
    Biology and Fertility of Soils, 2017, 53 : 723 - 727
  • [46] Recovery of groundwater N2O at the soil surface and its contribution to total N2O emissions
    Weymann, Daniel
    Well, Reinhard
    von der Heide, Carolin
    Boettcher, Juergen
    Flessa, Heiner
    Duijnisveld, Wilhelmus H. M.
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2009, 85 (03) : 299 - 312
  • [47] N2O and N2 emissions from denitrification respond differently to temperature and nitrogen supply
    Thang V. Lai
    Matthew D. Denton
    Journal of Soils and Sediments, 2018, 18 : 1548 - 1557
  • [48] Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation
    Qin, Shuping
    Ding, Keren
    Clough, Tim J.
    Hu, Chunsheng
    Luo, Jiafa
    BIOLOGY AND FERTILITY OF SOILS, 2017, 53 (07) : 723 - 727
  • [49] Replacing chemical fertilizer with manure reduces N2O emissions in winter wheat-summer maize cropping system under limited irrigation
    Wang, Xiquan
    Wang, Shang
    Zang, Huadong
    Nie, Jiangwen
    Zhao, Jie
    Wang, Peixin
    Peixoto, Leanne
    Yang, Yadong
    Olesen, Jorgen Eivind
    Zeng, Zhaohai
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 336
  • [50] How does straw returning combined with nitrogen fertilizer drive N2O emission in wheat-maize rotation system
    Song, Jiajie
    Bai, Jinze
    Zhang, Zhihao
    Yu, Qi
    Ren, Guangxin
    Han, Xinhui
    Wang, Xiaojiao
    Ren, Chengjie
    Feng, Yongzhong
    Wang, Xing
    SOIL USE AND MANAGEMENT, 2024, 40 (01)