Seasonal variations in N2 and N2O emissions from a wheat-maize cropping system

被引:20
|
作者
Chen, Tuo [1 ,2 ]
Oenema, Oene [3 ]
Li, Jiazhen [1 ,2 ]
Misselbrook, Tom [4 ]
Dong, Wenxu [1 ]
Qin, Shuping [5 ]
Yuan, Haijing [5 ]
Li, Xiaoxin [1 ]
Hu, Chunsheng [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Agr Resources Res, Key Lab Agr Water Resources,Hebei Lab Soil Ecol, 286 Huaizhong Rd, Shijiazhuang 050021, Hebei, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] Wageningen Univ & Res, Wageningen Environm Res, NL-6700 AA Wageningen, Netherlands
[4] Rothamsted Res, Okehampton EX20 2SB, Devon, England
[5] Fujian Agr & Forestry Univ, Coll Resources & Environm, Fuzhou 350002, Peoples R China
基金
英国生物技术与生命科学研究理事会; 中国国家自然科学基金; 国家重点研发计划;
关键词
N-2; flux; Nitrogen balance; N2O ratio; Missing nitrogen; Denitrification; NITROUS-OXIDE EMISSIONS; SOIL-WATER CONTENT; MEASURING DENITRIFICATION; MICROBIAL COMMUNITIES; GRASSLAND SOIL; NITRATE; FERTILIZER; FLUXES; DINITROGEN; MOISTURE;
D O I
10.1007/s00374-019-01373-8
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The N losses via denitrification and the N-2/N2O emission ratio are highly uncertain, mainly due to methodological difficulties concerning measurement of N-2 emissions. Here, we report on seasonal measurements of N2O and N-2 emissions from the top soil of a winter wheat-summer maize double-cropping system in the North China Plain. A novel double cylinder soil core method was used to measure N2O and N-2 fluxes in situ from a 20-year field experiment with four N fertilizer treatments (0, 200, 400, and 600kgNha(-1)year(-1)) and 16 sampling occasions over a 1-year period. The N-2-free helium-oxygen atmosphere in the inter-layer between the two cylinders acted as a buffer against N-2 diffusion from the atmosphere into the soil core. Total N2O emissions were 0.44, 1.31, 2.19, and 2.23kgNha(-1)year(-1), and total N-2 emissions were 8.3, 20.0, 22.5, and 24.7kgNha(-1)year(-1) from the N0, N200, N400, and N600 treatments, respectively. The N-2/N2O emission ratio ranged from 2 to 136, indicating that N-2 was the dominant gas. The N-2/N2O ratio was much higher in summer than in winter, and was inversely related to fertilizer N application. Fluxes of N-2 were statistically related to soil temperature and concentrations of NO3--N and DOC in soil extracts, while N2O fluxes were related to soil water content and concentrations of NO3--N and exchangeable NH4+ in soil extracts. The N-2/N2O ratio was related to soil temperature and exchangeable NH4+ and NO3--N concentrations. Our study provides new insights on variations of the N-2/N2O emission ratio in agroecosystems, and shows the importance of seasonal measurements.
引用
收藏
页码:539 / 551
页数:13
相关论文
共 50 条
  • [21] Amplitude and frequency of wetting and drying cycles drive N2 and N2O emissions from a subtropical pasture
    Friedl, Johannes
    Deltedesco, Evi
    Keiblinger, Katharina M.
    Gorfer, Markus
    De Rosa, Daniele
    Scheer, Clemens
    Grace, Peter R.
    Rowlings, David W.
    BIOLOGY AND FERTILITY OF SOILS, 2022, 58 (05) : 593 - 605
  • [22] The influence of straw returning on N2O emissions from a maize-wheat field in the North China Plain
    Zhou, Yizhen
    Zhang, Yuanyuan
    Tian, Di
    Mu, Yujing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 584 : 935 - 941
  • [23] Integrated management practices significantly affect N2O emissions and wheat-maize production at field scale in the North China Plain
    Shi, Yuefeng
    Wu, Wenliang
    Meng, Fanqiao
    Zhang, Zhihua
    Zheng, Liang
    Wang, Dapeng
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2013, 95 (02) : 203 - 218
  • [24] Indirect N2O emissions with seasonal variations from an agricultural drainage ditch mainly receiving interflow water
    Tian, Linlin
    Akiyama, Hiroko
    Zhu, Bo
    Shen, Xi
    ENVIRONMENTAL POLLUTION, 2018, 242 : 480 - 491
  • [25] Influence of nutrient solution pH on N2O and N2 emissions from a soilless culture system
    Daum, D
    Schenk, MK
    PLANT AND SOIL, 1998, 203 (02) : 279 - 287
  • [26] Straw amendment with nitrate-N decreased N2O/(N2O + N2) ratio but increased soil N2O emission: A case study of direct soil-born N2 measurements
    Wu, Di
    Wei, Zhijun
    Well, Reinhard
    Shan, Jun
    Yan, Xiaoyuan
    Bol, Roland
    Senbayram, Mehmet
    SOIL BIOLOGY & BIOCHEMISTRY, 2018, 127 : 301 - 304
  • [27] Use of the 15 N gas flux method to measure the source and level of N2O and N2 emissions from grazed grassland
    Baily, Anne
    Watson, Catherine J.
    Laughlin, Ronnie
    Matthews, Dave
    McGeough, Karen
    Jordan, Philip
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2012, 94 (2-3) : 287 - 298
  • [28] Influence of nutrient solution pH on N2O and N2 emissions from a soilless culture system
    Diemo Daum
    Manfred K. Schenk
    Plant and Soil, 1998, 203 : 279 - 288
  • [29] Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil
    Rex, David
    Clough, Timothy J.
    Richards, Karl G.
    de Klein, Cecile
    Morales, Sergio E.
    Samad, Md Sainur
    Grant, Jim
    Lanigan, Gary J.
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2018, 110 (01) : 135 - 149
  • [30] Correlating denitrifying catabolic genes with N2O and N2 emissions from swine slurry composting
    Angnes, G.
    Nicoloso, R. S.
    da Silva, M. L. B.
    de Oliveira, P. A. V.
    Higarashi, M. M.
    Mezzari, M. P.
    Miller, P. R. M.
    BIORESOURCE TECHNOLOGY, 2013, 140 : 368 - 375