Investigation of Ce0.9Sr0.1Cr0.5Co0.5O3-δ as the anode material for solid oxide fuel cells fueled with H2S

被引:4
|
作者
Zhu, Xiufang [1 ]
Shi, Yingying [1 ]
Li, Aiping [1 ]
Zhong, Qin [2 ]
机构
[1] Huaiyin Inst Technol, Sch Life Sci & Chem Engn, Huaian 223003, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Solid oxide fuel cell; Anode catalyst; Electrical conductivity; H2S; HYDROGEN-SULFIDE; IT-SOFCS; REDUCTION; PERFORMANCE; CATALYSTS; SUBSTITUTION; PEROVSKITES; CATHODE; NH3; XPS;
D O I
10.1007/s11581-013-1046-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ce0.9Sr0.1Cr0.5Co0.5O3-delta (CSCrCo) as an anode catalyst was studied in a solid oxide fuel cell (SOFC), where hydrogen sulfide (H2S) was used as fuel. The conductivities were evaluated with a four-probe DC technique in 3 % H-2-N-2 and 5 % H2S-N-2 at 570-800 A degrees C, respectively. X-ray diffraction (XRD) patterns show that CSCrCo powders are fluorite structure which is similar to that of CeO2 parent (JCPDS card no. 34-0394). Meanwhile, CSCrCo anode material has good chemical compatibility with electrolyte (Ce0.8Sm0.2O1.9 (SDC)) in N-2. Through the analysis of XRD and Fourier transform infrared patterns, no other new phase is detected after treatment in 5 % H2S-N-2 at 800 A degrees C for 5 h, which indicate that the material has a good sulfur tolerance. H-2 temperature-programmed reduction and Tafel curves indicate that the temperature of the best catalytic activity is 600 A degrees C. The electrochemical properties of the cell comprising CSCrCo-SDC/SDC/Ag are measured in 5 % H2S-N-2 at low temperatures (500 and 600 A degrees C). The maximal open circuit voltage is 1.04 V, the maximal power density is 12.55 mW cm(-2), and the maximal current density is 40 mA cm(-2) at 500 A degrees C. While at 600 A degrees C, the corresponding values are 0.95 V, 14.21 mW cm(-2), and 90.01 mA cm(-2), respectively. After SOFC operating in 5 % H2S, X-ray photoelectron spectroscopy is used to compare the fresh sample with the H2S-treated one.
引用
收藏
页码:1011 / 1021
页数:11
相关论文
共 50 条
  • [41] La0.5Sr0.2TiO3-δ Perovskite as Anode Material for Solid Oxide Fuel Cells
    Roudeau, S.
    Grenier, J. C.
    Bassat, J. M.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (04):
  • [42] La0.75Sr0.25-xCexCr0.5Mn0.5O3-δ electrode material for symmetric solid oxide fuel cells with H2S-containing fuel
    Song, Yang
    Tan, Wenyi
    Xu, Dandan
    Bu, Yunfei
    Zhong, Qin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 576 : 341 - 344
  • [43] High performance intermediate temperature solid oxide fuel cells with Ba0.5Sr0.5Co0.8Fe0.1Nb0.1O3-δ as cathode
    Li, Jiao
    Yang, Chenghao
    Liu, Meilin
    CERAMICS INTERNATIONAL, 2016, 42 (16) : 19397 - 19401
  • [44] Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3-δ as a bi-functional electrode material for solid oxide fuel cells
    Yang, Guangming
    Shen, Jian
    Chen, Yubo
    Tade, Moses O.
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2015, 298 : 184 - 192
  • [45] Pervoskite-type Ba0.5Sr0.5Al0.1Fe0.9O3-δ as Intermediate-Temperature Solid Oxide Fuel Cell Cathode
    Gan, Yun
    Xie, Kui
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2012, 25 (05) : 605 - 608
  • [46] PrBa0.5Sr0.5Co2O5+x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells
    Lu, Shiquan
    Long, Guohui
    Meng, Xiangwei
    Ji, Yuan
    Lu, Borui
    Zhao, Hongyuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (07) : 5914 - 5919
  • [47] Synthesis and electrocatalytic performance of La0.3Ce0.1 Sr0.5Ba0.1TiO3 anode catalyst for solid oxide fuel cells
    Zhou, Xin-Wen
    Sun, Yi-Fei
    Wang, Guang-Ya
    Gao, Tong
    Chuang, Kart T.
    Luo, Jing-Li
    Chen, Min
    Birss, Viola I.
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 43 : 79 - 82
  • [48] Effects of Ti doping on the electrochemical performance of (La0.75Sr0.25)(Mn0.5Cr0.5)O3-δ anode for solid oxide fuel cells
    Karim, Afizul H.
    Abdalla, Abdalla M.
    Park, Jun-Y
    Petra, Pg Mohd, I
    Azad, Abul K.
    PROCESSING AND APPLICATION OF CERAMICS, 2019, 13 (04) : 342 - 348
  • [49] Effect of La0.1Sr0.9Co0.5Mn0.5O3-δ protective coating layer on the performance of La0.6Sr0.4Co0.8Fe0.2O3-δ solid oxide fuel cell cathode
    Chou, Ping-Yi
    Ciou, Chun-Jing
    Lee, Yu-Chen
    Hung, I-Ming
    JOURNAL OF POWER SOURCES, 2012, 197 : 12 - 19
  • [50] Cobalt-free Composite Ba0.5Sr0.5Fe0.9Ni0.1O3-δ-Ce0.8Sm0.2O2-δ as Cathode for Intermediate-Temperature Solid Oxide Fuel Cell
    Chu, Xiangfeng
    Liu, Feng
    Zhu, Weichang
    Dong, Yongping
    Ye, Mingfu
    Sun, Wenqi
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2012, 28 (09) : 828 - 832