LIMITING SPECTRAL DISTRIBUTION OF A SYMMETRIZED AUTO-CROSS COVARIANCE MATRIX

被引:24
作者
Jin, Baisuo [1 ]
Wang, Chen [2 ]
Bai, Z. D. [2 ,3 ,4 ]
Nair, K. Krishnan [5 ]
Harding, Matthew [6 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[3] NE Normal Univ, Changchun, Jilin Province, Peoples R China
[4] NE Normal Univ, Sch Math & Stat, Changchun, Jilin Province, Peoples R China
[5] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Econ, Stanford, CA 94305 USA
关键词
Auto-cross covariance; factor analysis; Mareenko-Pastur law; limiting spectral distribution; order detection; random matrix theory; Stieltjes transform; EMPIRICAL DISTRIBUTION; EIGENVALUES; THEOREMS; PRODUCT; STATISTICS; NUMBER;
D O I
10.1214/13-AAP945
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the limiting spectral distribution (LSD) of a symmetrized auto-cross covariance matrix. The auto-cross covariance matrix is defined as M-tau = 1/2T Sigma(T)(j=1) (e(j) e(j+tau)*+ e(j+tau)e(j)*) where e(j) is an N dimensional vectors of independent standard complex components with properties stated in Theorem 1.1, and tau is the lag. M-0 is well studied in the literature whose LSD is the Mareenko-Pastur (MP) Law. The contribution of this paper is in determining the LSD of M-tau where tau >= 1. It should be noted that the LSD of the M-tau does not depend on tau. This study arose from the investigation of and plays an key role in the model selection of any large dimensional model with a lagged time series structure, which is central to large dimensional factor models and singular spectrum analysis.
引用
收藏
页码:1199 / 1225
页数:27
相关论文
共 35 条
[1]  
[Anonymous], SPECTRAL ANAL LARGE
[2]   Determining the number of factors in approximate factor models [J].
Bai, JS ;
Ng, S .
ECONOMETRICA, 2002, 70 (01) :191-221
[3]   On limit theorem for the eigenvalues of product of two random matrices [J].
Bai, Z. D. ;
Miao, Baiqi ;
Jin, Baisuo .
JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (01) :76-101
[4]   ON LIMITING SPECTRAL DISTRIBUTION OF PRODUCT OF 2 RANDOM MATRICES WHEN THE UNDERLYING DISTRIBUTION IS ISOTROPIC [J].
BAI, ZD ;
YIN, YQ ;
KRISHNAIAH, PR .
JOURNAL OF MULTIVARIATE ANALYSIS, 1986, 19 (01) :189-200
[5]  
Bai ZD, 2004, ANN PROBAB, V32, P553
[6]  
Bai ZD, 2008, STAT SINICA, V18, P425
[7]   NO EIGENVALUES OUTSIDE THE SUPPORT OF THE LIMITING SPECTRAL DISTRIBUTION OF INFORMATION-PLUS-NOISE TYPE MATRICES [J].
Bai, Zhidong ;
Silverstein, Jack W. .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
[8]   Central limit theorems for eigenvalues in a spiked population model [J].
Bai, Zhidong ;
Yao, Jian-Feng .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (03) :447-474
[9]   Eigenvalues of large sample covariance matrices of spiked population models [J].
Baik, Jinho ;
Silverstein, Jack W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) :1382-1408
[10]   Limiting spectral distribution of a special circulant [J].
Bose, A ;
Mitra, J .
STATISTICS & PROBABILITY LETTERS, 2002, 60 (01) :111-120