SOLITON DYNAMICS FOR THE SCHRODINGER-NEWTON SYSTEM

被引:19
作者
D'Avenia, Pietro [1 ]
Squassina, Marco [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
[2] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
关键词
Soliton dynamics; Schrodinger-Newton system; modulational stability; ground states; CONCENTRATION-COMPACTNESS PRINCIPLE; GROUND-STATES; SEMICLASSICAL LIMIT; STABILITY THEORY; WAVES; EQUATIONS; UNIQUENESS; EXISTENCE; CALCULUS;
D O I
10.1142/S0218202513500590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the soliton dynamics for the Schrodinger-Newton system by proving suitable modulational stability estimates in the spirit of those obtained by Weinstein for local equations.
引用
收藏
页码:553 / 572
页数:20
相关论文
共 29 条
[1]  
Ambrosetti A, 2007, CONTEMP MATH, V446, P19
[2]   On the Dynamics of Solitons in the Nonlinear Schrodinger Equation [J].
Benci, Vieri ;
Ghimenti, Marco ;
Micheletti, Anna Maria .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :467-492
[3]   The nonlinear Schroedinger equation: Solitons dynamics [J].
Benci, Vieri ;
Ghimenti, Marco ;
Micheletti, Anna Maria .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (12) :3312-3341
[4]  
Berezin F. A, 1991, MATH ITS APPL SOVIET, V66
[5]  
Bronski JC, 2000, MATH RES LETT, V7, P329
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[7]  
Cazenave T., 1996, Textos de Metodos Matematicos, V26
[8]   Semi-classical limit for Schrodinger equations with magnetic field and Hartree-type nonlinearities [J].
Cingolani, Silvia ;
Secchi, Simone ;
Squassina, Marco .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :973-1009
[9]   SOLITARY WAVES FOR THE HARTREE EQUATION WITH A SLOWLY VARYING POTENTIAL [J].
Datchev, Kiril ;
Ventura, Ivan .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (01) :63-90
[10]   Solitary wave dynamics in an external potential [J].
Fröhlich, J ;
Gustafson, S ;
Jonsson, BLG ;
Sigal, IM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (03) :613-642