Derived categories of quasi-hereditary algebras and their derived composition series

被引:0
作者
Kalck, Martin [1 ]
机构
[1] Univ Edinburgh, Sch Math, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES | 2017年
基金
英国工程与自然科学研究理事会;
关键词
Triangulated categories; quasi-hereditary algebras; exceptional sequences; recollements; gentle algebras; derived equivalences; derived composition series; derived Jordan-Holder property; LOCALIZATION; QUIVER; MODULE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study composition series of derived module categories in the sense of Angeleri Hugel, Konig & Liu for quasi-hereditary algebras. More precisely, we show that having a composition series with all factors being derived categories of vector spaces does not characterise derived categories of quasi-hereditay algebras. This gives a negative answer to a question of Liu & Yang and the proof also confirms part of a conjecture of Bobinski & Malicki. In another direction, we show that derived categories of quasi hereditary algebras can have composition series with lots of different lengths and composition factors. In other words, there is no Jordan-Holder property for composition series of derived categories of quasi-hereditary algebras.
引用
收藏
页码:269 / +
页数:6
相关论文
共 71 条
[61]   On the quiver with relations of a repetitive algebra [J].
Schröer, J .
ARCHIV DER MATHEMATIK, 1999, 72 (06) :426-432
[62]  
Scott L., 1987, Proc. Sympos. Pure Math., V47, P271
[63]  
SEIDEL P, 2001, SYMPLECTIC GEOMETRY, P429
[64]   TAME BISERIAL ALGEBRAS [J].
WALD, B ;
WASCHBUSCH, J .
JOURNAL OF ALGEBRA, 1985, 95 (02) :480-500
[65]  
Wemyss M., ARXIV14117189
[66]  
Yang D., ALGEBRAIC STRATIFICA
[67]  
Zhou G., 2007, THESIS
[68]  
Zhu B., 2001, Tsukuba J. Math, V25, P1
[69]  
Zimmermann A., 1996, CAN MATH SOC C P 18, P721
[70]  
Zimmermann A., CORRECTION STABLE EN