BACKGROUND WHITENED TARGET DETECTION ALGORITHM FOR HYPERSPECTRAL IMAGERY

被引:1
|
作者
Ren, Hsuan [1 ]
Chen, Hsien-Ting [2 ]
机构
[1] Natl Cent Univ, Ctr Space & Remote Sensing Res, Taoyuan, Taiwan
[2] Natl Cent Univ, Dept Comp Sci & Informat Engn, Taoyuan, Taiwan
来源
JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN | 2017年 / 25卷 / 01期
关键词
Background Whitened Target Detection Algorithm; Anomaly Detection; RX algorithm; synchronization Skewness and Kurtosis method; whitening process; PROJECTION PURSUIT; RECOGNITION; STATISTICS;
D O I
10.6119/JMST-016-0630-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hyperspectral remotely sensed imagery has undergone rapid advancements recently. Hyperspectral sensors collect surface information with hundreds of channels which results in hundreds of co-registered images. To process this huge amount of data without information of the scene is a great challenge, especially for anomaly detection. Several methods are devoted to this problem, such as the well-known RX algorithm and high moment statistics approaches. The RX algorithm can detect all anomalies in a single image but it cannot discriminate them. On the other hand, the high-moment statistics approaches use criteria such as Skewness and Kurtosis to find the projection directions recursively, so it is computationally expensive. In this paper, we propose an effective algorithm for anomaly detection and discrimination extended from RX algorithm, called Background Whitened Target Detection Algorithm (BWTDA). It first models the background signature with Gaussian distribution and applies whitening process. After the process, the background will be indepenent-identical-distributed Gaussian in all spectral bands. Then apply Target Detection Process (TDP) to search for potential anomalies automatically and Target Classification Process (TCP) for classifying them individually. The experimental results show that the proposed method can improve the RX algorithm by discriminating the anomalies and outperforming the original high-moment statistics approach in terms of computational time.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 50 条
  • [41] Target Detection Using the Background Model from the Topological Anomaly Detection Algorithm
    Munoz, Leidy P. Dorado
    Messinger, David W.
    Ziemann, Amanda K.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [42] Anomaly detection and classification for hyperspectral imagery
    Chang, CI
    Chiang, SS
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (06): : 1314 - 1325
  • [43] Explicit Background Endmember Learning for Hyperspectral Anomaly Detection
    Li, Kun
    An, Wei
    Wang, Yingqian
    Zhang, Tingting
    Qin, Yao
    Gao, Tinghong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [44] Hyperspectral image target detection via integrated background suppression with adaptive weight selection
    Wu, Ke
    Xu, Guang
    Zhang, Yuxiang
    Du, Bo
    NEUROCOMPUTING, 2018, 315 : 59 - 67
  • [45] Hyperspectral Anomaly Detection: A Dual Theory of Hyperspectral Target Detection
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] Genetic Algorithm-Based Weighted Constraint Target Band Selection for Hyperspectral Target Detection
    Chen, Wenbin
    Zhi, Xiyang
    Hu, Jianming
    Yu, Lijian
    Han, Qichao
    Zhang, Wei
    REMOTE SENSING, 2025, 17 (04)
  • [47] Kernel ICA Feature Extraction for Anomaly Detection in Hyperspectral Imagery
    Zhao Chunhui
    Wang Yulei
    Mei Feng
    CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (02): : 265 - 269
  • [48] Spectral Adversarial Feature Learning for Anomaly Detection in Hyperspectral Imagery
    Xie, Weiying
    Liu, Baozhu
    Li, Yunsong
    Lei, Jie
    Chang, Chein-, I
    He, Gang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2352 - 2365
  • [49] Anomaly Detection in Hyperspectral Imagery Based on Gaussian Mixture Model
    Qu, Jiahui
    Du, Qian
    Li, Yunsong
    Tian, Long
    Xia, Haoming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (11): : 9504 - 9517
  • [50] SMALL TARGET DETECTION BASED ON THREE-DIMENSIONAL PRINCIPAL COMPONENT ANALYSIS IN HYPERSPECTRAL IMAGERY
    Zhang, Xing
    Wen, Gongjian
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX, 2014, 9244