A 1D computer model of the arterial circulation in horses: An important resource for studying global interactions between heart and vessels under normal and pathological conditions

被引:2
作者
Vera, Lisse [1 ]
Arias, Daime Campos [2 ,3 ]
Muylle, Sofie [4 ]
Stergiopulos, Nikos [5 ]
Segers, Patrick [2 ]
van Loon, Gunther [1 ]
机构
[1] Univ Ghent, Equine Cardioteam, Dept Large Anim Internal Med, Fac Vet Med, Ghent, Belgium
[2] Univ Ghent, IBiTech BioMMeda, Ghent, Belgium
[3] CUJAE, Biomech & Biomat Res Grp, Havana, Cuba
[4] Univ Ghent, Fac Vet Med, Dept Morphol, Ghent, Belgium
[5] Ecole Polytech Fed Lausanne, Lab Hemodynam & Cardiovasc Technol, Lausanne, Switzerland
关键词
SUDDEN-DEATH; BLOOD-FLOW; PRESSURE; HEMODYNAMICS; WAVES; VALIDATION;
D O I
10.1371/journal.pone.0221425
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arterial rupture in horses has been observed during exercise, after phenylephrine administration or during parturition (uterine artery). In human pathophysiological research, the use of computer models for studying arterial hemodynamics and understanding normal and abnormal characteristics of arterial pressure and flow waveforms is very common. The objective of this research was to develop a computer model of the equine arterial circulation, in order to study local intra-arterial pressures and flow dynamics in horses. Morphologically, large differences exist between human and equine aortic arch and arterial branching patterns. Development of the present model was based on post-mortem obtained anatomical data of the arterial tree (arterial lengths, diameters and branching angles); in vivo collected ultrasonographic flow profiles from the common carotid artery, external iliac artery, median artery and aorta; and invasively collected pressure curves from carotid artery and aorta. These data were used as input for a previously validated (in humans) 1D arterial network model. Data on terminal resistance and arterial compliance parameters were tuned to equine physiology. Given the large arterial diameters, Womersley theory was used to compute friction coefficients, and the input into the arterial system was provided via a scaled time-varying elastance model of the left heart. Outcomes showed plausible predictions of pressure and flow waveforms throughout the considered arterial tree. Simulated flow waveform morphology was in line with measured flow profiles. Consideration of gravity further improved model based predicted waveforms. Derived flow waveform patterns could be explained using wave power analysis. The model offers possibilities as a research tool to predict changes in flow profiles and local pressures as a result of strenuous exercise or altered arterial wall properties related to age, breed or gender.
引用
收藏
页数:24
相关论文
共 38 条
[31]   One-dimensional modelling of a vascular network in space-time variables [J].
Sherwin, SJ ;
Franke, V ;
Peiró, J ;
Parker, K .
JOURNAL OF ENGINEERING MATHEMATICS, 2003, 47 (3-4) :217-250
[32]   COMPUTER-SIMULATION OF ARTERIAL FLOW WITH APPLICATIONS TO ARTERIAL AND AORTIC STENOSES [J].
STERGIOPULOS, N ;
YOUNG, DF ;
ROGGE, TR .
JOURNAL OF BIOMECHANICS, 1992, 25 (12) :1477-1488
[33]   Effect of an abdominal aortic aneurysm on wave reflection in the aorta [J].
Swillens, Abigail ;
Lanoye, Lieve ;
De Backer, Julie ;
Stergiopulos, Nikos ;
Verdonck, Pascal R. ;
Vermassen, Frank ;
Segers, Patrick .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (05) :1602-1611
[34]   Pathology of lethal peripartum broad ligament haematoma in 31 Thoroughbred mares [J].
Ueno, T. ;
Nambo, Y. ;
Tajima, Y. ;
Umemura, T. .
EQUINE VETERINARY JOURNAL, 2010, 42 (06) :529-533
[35]   Impact of Aortic Grafts on Arterial Pressure: A Computational Fluid Dynamics Study [J].
Vardoulis, O. ;
Coppens, E. ;
Martin, B. ;
Reymond, P. ;
Tozzi, P. ;
Stergiopulos, N. .
EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2011, 42 (05) :704-710
[36]   PRESSURE AND FLOW IN SYSTEMIC ARTERIAL SYSTEM [J].
WEMPLE, RR ;
MOCKROS, LF .
JOURNAL OF BIOMECHANICS, 1972, 15 (06) :629-&
[37]   Validation of a 1D patient-specific model of the arterial hemodynamics in bypassed lower-limbs: Simulations against in vivo measurements [J].
Willemet, Marie ;
Lacroix, Valerie ;
Marchandise, Emilie .
MEDICAL ENGINEERING & PHYSICS, 2013, 35 (11) :1573-1583
[38]   Periparturient Arterial Rupture in Mares: A Postmortem Study [J].
Williams, Neil M. ;
Bryant, Uneeda K. .
JOURNAL OF EQUINE VETERINARY SCIENCE, 2012, 32 (05) :281-284