A coupled phase field/diffusion model for upper and lower bainitic transformation

被引:11
作者
Duesing, Martin [1 ]
Mahnken, Rolf [1 ]
机构
[1] Paderborn Univ, Chair Engn Mech, Warburger Str 100, D-33098 Paderborn, Germany
关键词
Coupled phase field/diffusion model; Bainite; Multiphase field method; Cahn-Hilliard diffusion; Diffusion across the interface; Lower bainitic transformation; Upper bainitic transformation; Thermodynamic framework; Microforce balance; FIELD SIMULATION; FERRITE TRANSFORMATION; ISOGEOMETRIC ANALYSIS; TRANSITIONS; AUSTENITE;
D O I
10.1016/j.ijsolstr.2017.11.018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Bainite is a steel microstructure consisting of three phases, bainitic ferrite, austenite and carbides. It forms in two different morphologies, upper and lower bainite, where different diffusion mechanisms are dominant. The aim of this work is to simulate both transformations within a unified model. To this end, we extend an own previously published model for lower bainite with diffusion across the phase interface. As a central idea we introduce weighted Helmholtz energy functions and a weighted mobility tensor, respectively. The individual Helmholtz energy functions and mobility terms are related to the different diffusion mechanisms which are responsible for the formation of both morphologies. Two representative examples illustrate the capability of the coupled phase field/diffusion model and show the expected behaviour. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:172 / 183
页数:12
相关论文
共 28 条
[1]   A phase-field model for bainitic transformation [J].
Arif, T. T. ;
Qin, R. S. .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 77 :230-235
[2]  
Bhadeshia H. K. D. H., 2015, BAINITE STEELS THEOR
[3]   LOWER BAINITE TRANSFORMATION AND THE SIGNIFICANCE OF CARBIDE PRECIPITATION. [J].
Bhadeshia, H.K.D.H. .
Acta Metallurgica, 1980, 28 (08) :1103-1114
[4]   Simulation of lower bainitic transformation with the phase-field method considering carbide formation [J].
Duesing, M. ;
Mahnken, R. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 111 :91-100
[5]   A thermodynamic framework for coupled multiphase Ginzburg-Landau/Cahn-Hilliard systems for simulation of lower bainitic transformation [J].
Duesing, Martin ;
Mahnken, Rolf .
ARCHIVE OF APPLIED MECHANICS, 2016, 86 (12) :1947-1964
[6]  
Engel H, 1990, METALLFACHKUNDE, V1
[7]   CONTINUUM THEORY OF THERMALLY-INDUCED PHASE-TRANSITIONS BASED ON AN ORDER-PARAMETER [J].
FRIED, E ;
GURTIN, ME .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 68 (3-4) :326-343
[8]   DYNAMIC SOLID-SOLID TRANSITIONS WITH PHASE CHARACTERIZED BY AN ORDER-PARAMETER [J].
FRIED, E ;
GURTIN, ME .
PHYSICA D, 1994, 72 (04) :287-308
[9]   Isogeometric analysis of the Cahn-Hilliard phase-field model [J].
Gomez, Hector ;
Calo, Victor M. ;
Bazilevs, Yuri ;
Hughes, Thomas J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (49-50) :4333-4352
[10]   Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance [J].
Gurtin, ME .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 92 (3-4) :178-192