Encapsulation of drug reservoirs in fibers by emulsion electrospinning: Morphology characterization and preliminary release assessment

被引:273
作者
Qi, Hongxu
Hu, Ping [1 ]
Xu, Jun
Wang, Aijun
机构
[1] Tsinghua Univ, Adv Mat Lab, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Biol Sci & Biotechnol, State Key Lab Biomembrane & Membrane Biotechnol, Beijing 100084, Peoples R China
关键词
D O I
10.1021/bm060264z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, we prepared composite fibers via electrospinning from either W/O or O/W emulsion. SEM images demonstrate the beads-in-string structures in these fibers and proved this technique to be an effective method for microencapsulation. As a practical application, Ca-alginate microspheres, which serve as reservoirs for hydrophilic drugs, were prepared in a reverse emulsion and then incorporated into poly (L-lactic acid) (PLLA) fibers by electrospinning. With the bovine serum albumin (BSA) loaded into the microspheres, the beads-in-string structure thus entrapped hydrophilic proteins in hydrophobic polymeric matrix. In the in vitro release test, BSA, which was released from composite fibers, achieved prolonged release profiles and lower burst release rates than those from naked Ca-alginate microspheres. In comparison with other well-established techniques to prepare microcapsules, such as solvent evaporation and spray-drying techniques, emulsion electrospinning features partly competing, partly complementary characteristics. Extension to other emulsion systems will be able to fabricate new types of functional structures.
引用
收藏
页码:2327 / 2330
页数:4
相关论文
共 29 条
[1]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, JM ;
Shive, MS .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 28 (01) :5-24
[2]   Growth factor delivery for tissue engineering [J].
Babensee, JE ;
McIntire, LV ;
Mikos, AG .
PHARMACEUTICAL RESEARCH, 2000, 17 (05) :497-504
[3]   Materials for protein delivery in tissue engineering [J].
Baldwin, SP ;
Saltzman, WM .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 33 (1-2) :71-86
[4]   The sintered microsphere matrix for bone tissue engineering:: In vitro osteoconductivity studies [J].
Borden, M ;
Attawia, M ;
Laurencin, CT .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 61 (03) :421-429
[5]   Sustained release of proteins from electrospun biodegradable fibers [J].
Chew, SY ;
Wen, J ;
Yim, EKF ;
Leong, KW .
BIOMACROMOLECULES, 2005, 6 (04) :2017-2024
[6]   Beaded nanofibers formed during electrospinning [J].
Fong, H ;
Chun, I ;
Reneker, DH .
POLYMER, 1999, 40 (16) :4585-4592
[7]   Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology [J].
Freitas, S ;
Merkle, HP ;
Gander, B .
JOURNAL OF CONTROLLED RELEASE, 2005, 102 (02) :313-332
[8]   Protein release from alginate matrices [J].
Gombotz, WR ;
Wee, SF .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 31 (03) :267-285
[9]   Controlled release from coated polymer microparticles embedded in tissue-engineered scaffolds [J].
Hu, Y ;
Hollinger, JO ;
Marra, KG .
JOURNAL OF DRUG TARGETING, 2001, 9 (06) :431-438
[10]  
JINOH Y, 2005, MACROMOL S, V219, P147