Rheological impacts of particle softness on wetted polymer-grafted silica nanoparticles in polymer melts

被引:43
|
作者
McEwan, Maura [1 ]
Green, David [1 ]
机构
[1] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA
关键词
MOLECULAR-WEIGHT POLY(DIMETHYLSILOXANE)S; COPOLYMER MICELLAR SYSTEMS; NON-NEWTONIAN FLOW; INTERPARTICLE INTERACTIONS; VISCOELASTIC PROPERTIES; MECHANICAL-PROPERTIES; HOMOPOLYMER MATRIX; SHEAR VISCOSITY; STEADY-SHEAR; DISPERSIONS;
D O I
10.1039/b816975f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Well-characterized dispersions of silica nanoparticles, stabilized by end-tethered poly(dimethylsiloxane) (PDMS) chains in PDMS melts have been investigated to better understand the impact of the graft layer on bulk properties. The relative "softness'' of completely wet, dispersed particles is examined by varying the melt molecular weight (P = 2-13 kg/mol) and particle core radius (a(c) - 16-600 nm). As P decreases at constant graft molecular weight (N - 25 kg/mol) and graft density (Sigma approximate to 0.17 chains/nm(2)), enhanced stretching of the brush is supported by polymer scaling theory predictions. Using rheology, particle interactions for systems of varying particle volume fraction (i.e., interparticle separation distance) have been studied. Through steady shear and oscillatory rheological experiments, we have observed a liquid-solid transition that depends on particle softness, or the ratio of the brush height to particle core radius. At particle volume fractions above the liquid-solid transition, an increase in mechanical properties, namely storage modulus and relative viscosity, in lower molecular weight melts occurs due to higher interparticle repulsions from greater stretching of the brush. Moreover, plateau moduli, G'(infinity), for particle concentrations above the liquid-solid transition, scale with the interparticle separation distance with a dependence corresponding to a repulsive interaction potential. Ultimately, elucidation of the role of the graft layer on nanoparticles dispersed in polymer melts will aid in the formulation of nanomaterials in applications such as coatings, optics, catalysis, and plastics.
引用
收藏
页码:1705 / 1716
页数:12
相关论文
共 50 条
  • [1] Assembly of Polymer-Grafted Magnetic Nanoparticles in Polymer Melts
    Jiao, Yang
    Akcora, Pinar
    MACROMOLECULES, 2012, 45 (08) : 3463 - 3470
  • [2] Nanoscale Diffusion of Polymer-Grafted Nanoparticles in Entangled Polymer Melts
    Wang, Liquan
    Ma, Jun
    Hong, Wei
    Zhang, Haojing
    Lin, Jiaping
    MACROMOLECULES, 2020, 53 (19) : 8393 - 8399
  • [3] Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts
    Chen, Yulong
    Xu, Haohao
    Ma, Yangwei
    Liu, Jun
    Zhang, Liqun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (18) : 11322 - 11335
  • [4] Polymer-Grafted Nanoparticles
    Hore, Michael J. A.
    Korley, LaShanda T. J.
    Kumar, Sanat K.
    Journal of Applied Physics, 2020, 128 (03):
  • [5] Polymer-Grafted Nanoparticles
    Hore, Michael J. A.
    Korley, LaShanda T. J.
    Kumar, Sanat K.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (03)
  • [6] Structure of Polymer-Grafted Nanoparticle Melts
    Midya, Jiarul
    Rubinstein, Michael
    Kumar, Sanat K.
    Nikoubashman, Arash
    ACS NANO, 2020, 14 (11) : 15505 - 15516
  • [7] Implicit Chain Particle Model for Polymer-Grafted Nanoparticles
    Wu, Zhenghao
    Pal, Subhadeep
    Keten, Sinan
    MACROMOLECULES, 2023, 56 (09) : 3259 - 3271
  • [8] Softness- and Size-Dependent Packing Symmetries of Polymer-Grafted Nanoparticles
    Yun, Hongseok
    Lee, Young Jun
    Xu, Meng
    Lee, Doh C.
    Stein, Gila E.
    Kim, Bumjoon J.
    ACS NANO, 2020, 14 (08) : 9644 - 9651
  • [9] Assembly of Polymer-Grafted Nanoparticles in Polymer Matrices
    Koh, Clement
    Grest, Gary S.
    Kumar, Sanat K.
    ACS NANO, 2020, 14 (10) : 13491 - 13499
  • [10] Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT
    Feng, Jichang
    Li, Yang
    Yang, Mujie
    SENSORS AND ACTUATORS B-CHEMICAL, 2010, 145 (01) : 438 - 443