The Ca2+ Homeostasis defects in a pgm2Δ strain of Saccharomyces cerevisiae are caused by excessive vacuolar Ca2+ uptake mediated by the Ca2+-ATPase Pmc1p

被引:17
|
作者
Aiello, DP
Fu, LW
Miseta, A
Sipos, K
Bedwell, DM
机构
[1] Univ Alabama, Dept Microbiol, Birmingham, AL 35294 USA
[2] Univ Med Sch, Dept Clin Chem, H-7624 Pecs, Hungary
[3] Univ Med Sch, Dept Biochem, H-7624 Pecs, Hungary
关键词
D O I
10.1074/jbc.M400833200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Loss of the major isoform of phosphoglucomutase (PGM) causes an accumulation of glucose 1-phosphate when yeast cells are grown with galactose as the carbon and energy source. Remarkably, the pgm2Delta strain also exhibits a severe imbalance in intracellular Ca2+ homeostasis when grown under these conditions. In the present study, we examined how the pgm2Delta mutation alters yeast Ca2+ homeostasis in greater detail. We found that a shift from glucose to galactose as the carbon source resulted in a 2-fold increase in the rate of cellular Ca2+ uptake in wild-type cells, whereas Ca2+ uptake increased 8-fold in the pgm2Delta mutant. Disruption of the PMC1 gene, which encodes the vacuolar Ca2+-ATPase Pmc1p, suppressed the Ca2+-related phenotypes observed in the pgm2Delta strain. This suggests that excessive vacuolar Ca2+ uptake is tightly coupled to these defects in Ca2+ homeostasis. An in vitro assay designed to measure Ca2+ sequestration into intracellular compartments confirmed that the pgm2Delta mutant contained a higher level of Pmc1p-dependent Ca2+ transport activity than the wild-type strain. We found that this increased rate of vacuolar Ca2+ uptake also coincided with a large induction of the unfolded protein response in the pgm2Delta mutant, suggesting that Ca2+ uptake into the endoplasmic reticulum compartment was reduced. These results indicate that the excessive Ca2+ uptake and accumulation previously shown to be associated with the pgm2Delta mutation are due to a severe imbalance in the distribution of cellular Ca2+ into different intracellular compartments.
引用
收藏
页码:38495 / 38502
页数:8
相关论文
共 50 条
  • [1] The Vacuolar Ca2+ ATPase Pump Pmc1p Is Required for Candida albicans Pathogenesis
    Luna-Tapia, Arturo
    DeJarnette, Christian
    Sansevere, Emily
    Reitler, Parker
    Butts, Arielle
    Hevener, Kirk E.
    Palmer, Glen E.
    MSPHERE, 2019, 4 (01)
  • [2] REGULATION OF CA2+ IN SACCHAROMYCES-CEREVISIAE - CHARACTERIZATION OF VACUOLAR CA2+ TRANSPORT
    BEELER, T
    DUNN, T
    FASEB JOURNAL, 1992, 6 (01): : A237 - A237
  • [3] Vacuolar Ca2+ uptake
    Pittman, Jon K.
    CELL CALCIUM, 2011, 50 (02) : 139 - 146
  • [4] Regulation of Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase at limiting [Ca2+]
    Berman, MC
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1999, 1418 (01): : 48 - 60
  • [5] Anionic lipids and accumulation of Ca2+ by a Ca2+-ATPase
    Dalton, KA
    Mall, S
    Pilot, JD
    East, JM
    Lee, AG
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1998, 26 (03) : S234 - S234
  • [6] Initial steps of the interaction of Ca2+-ATPase with Ca2+
    Moller, JV
    Juul, BS
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 279A - 279A
  • [7] EFFECTS OF POLYCATIONS ON CA2+ BINDING TO THE CA2+-ATPASE
    HUGHES, G
    KHAN, YM
    EAST, JM
    BIOCHEMICAL JOURNAL, 1995, 308 : 493 - 499
  • [8] Ca2+ homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca2+ storage
    D'Hooge, Petra
    Coun, Catherina
    Van Eyck, Vincent
    Faes, Liesbeth
    Ghillebert, Ruben
    Marien, Lore
    Winderickx, Joris
    Callewaert, Geert
    CELL CALCIUM, 2015, 58 (02) : 226 - 235
  • [9] Induction of vacuolar Ca2+-ATPase and H+/Ca2+ exchange activity in yeast mutants lacking Pmr1, the Golgi Ca2+-ATPase
    Marchi, V
    Sorin, A
    Wei, Y
    Rao, R
    FEBS LETTERS, 1999, 454 (03) : 181 - 186