On the numerical integration of ordinary differential equations by processed methods

被引:22
作者
Blanes, S [1 ]
Casas, F
Murua, A
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
[2] Univ Basque Country, Informat Fak, Konputazio Zientziak Eta AA Saila, Donostia San Sebastian, Spain
关键词
effective order; processing technique; cheap postprocessor; initial value problems;
D O I
10.1137/S0036142902417029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a theoretical analysis of the processing technique for the numerical integration of ODEs. We get the effective order conditions for processed methods in a general setting so that the results obtained can be applied to different types of numerical integrators. We also propose a procedure to approximate the postprocessor such that its evaluation is virtually cost-free. The analysis is illustrated for a particular class of composition methods.
引用
收藏
页码:531 / 552
页数:22
相关论文
共 25 条
[1]   High-order Runge-Kutta-Nystrom geometric methods with processing [J].
Blanes, S ;
Casas, F ;
Ros, J .
APPLIED NUMERICAL MATHEMATICS, 2001, 39 (3-4) :245-259
[2]   High order numerical integrators for differential equations using composition and processing of low order methods [J].
Blanes, S .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (03) :289-306
[3]   Symplectic integration with processing: A general study [J].
Blanes, S ;
Casas, F ;
Ros, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :711-727
[4]   Processing symplectic methods for near-integrable Hamiltonian systems [J].
Blanes, S ;
Casas, F ;
Ros, J .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 77 (01) :17-35
[5]  
BLANES S, 2003010 GIPS
[6]  
Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[7]  
Butcher J C., 1969, Conference on the numerical solution of differential equations, P133
[8]   Variable stepsize schemes for effective order methods and enhanced order composition methods [J].
Butcher, JC ;
Chan, TMH .
NUMERICAL ALGORITHMS, 2001, 26 (02) :131-150
[9]   The number of conditions for a Runge-Kutta method to have effective order p [J].
Butcher, JC ;
SanzSerna, JM .
APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) :103-111
[10]   Symplectic integrators tailored to the time-dependent Schrodinger equation [J].
Gray, SK ;
Manolopoulos, DE .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (18) :7099-7112