Quantum Nondemolition Detection of a Propagating Microwave Photon

被引:91
作者
Sathyamoorthy, Sankar R. [1 ]
Tornberg, L. [1 ]
Kockum, Anton F. [1 ]
Baragiola, Ben Q. [2 ]
Combes, Joshua [2 ]
Wilson, C. M. [1 ,3 ,4 ]
Stace, Thomas M. [5 ]
Johansson, G. [1 ]
机构
[1] Chalmers, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[2] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[5] Univ Queensland, Sch Phys Sci, Ctr Engineered Quantum Syst, St Lucia, Qld 4072, Australia
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
FIELD; CIRCUIT; NUMBER;
D O I
10.1103/PhysRevLett.112.093601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realizing such a detector is complicated by the fact that photon-photon interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we show how this type of interaction can be used to realize a quantum nondemolition measurement of a single propagating microwave photon. The scheme we propose uses a chain of solid-state three-level systems (transmons) cascaded through circulators which suppress photon backscattering. Our theoretical analysis shows that microwave-photon detection with fidelity around 90% can be realized with existing technologies.
引用
收藏
页数:5
相关论文
共 37 条
[1]   N-photon wave packets interacting with an arbitrary quantum system [J].
Baragiola, Ben Q. ;
Cook, Robert L. ;
Branczyk, Agata M. ;
Combes, Joshua .
PHYSICAL REVIEW A, 2012, 86 (01)
[2]   Proposal for generating and detecting multi-qubit GHZ states in circuit QED [J].
Bishop, Lev S. ;
Tornberg, L. ;
Price, D. ;
Ginossar, E. ;
Nunnenkamp, A. ;
Houck, A. A. ;
Gambetta, J. M. ;
Koch, Jens ;
Johansson, G. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NEW JOURNAL OF PHYSICS, 2009, 11
[3]  
Braginski V., 1992, Quantum Measurements
[4]   QUANTUM TRAJECTORY THEORY FOR CASCADED OPEN SYSTEMS [J].
CARMICHAEL, HJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2273-2276
[5]   Microwave Photon Counter Based on Josephson Junctions [J].
Chen, Y. -F. ;
Hover, D. ;
Sendelbach, S. ;
Maurer, L. ;
Merkel, S. T. ;
Pritchett, E. J. ;
Wilhelm, F. K. ;
McDermott, R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (21)
[6]   Breakdown of the Cross-Kerr Scheme for Photon Counting [J].
Fan, Bixuan ;
Kockum, Anton F. ;
Combes, Joshua ;
Johansson, Goran ;
Hoi, Io-chun ;
Wilson, C. M. ;
Delsing, Per ;
Milburn, G. J. ;
Stace, Thomas M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (05)
[7]   Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement [J].
Gambetta, Jay ;
Braff, W. A. ;
Wallraff, A. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 76 (01)
[8]   DRIVING A QUANTUM SYSTEM WITH THE OUTPUT FIELD FROM ANOTHER DRIVEN QUANTUM SYSTEM [J].
GARDINER, CW .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2269-2272
[9]   Quantum Feedback Networks: Hamiltonian Formulation [J].
Gough, J. ;
James, M. R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (03) :1109-1132
[10]   Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states [J].
Gough, John E. ;
James, Matthew R. ;
Nurdin, Hendra I. ;
Combes, Joshua .
PHYSICAL REVIEW A, 2012, 86 (04)