Jacobi θ-functions and discrete Fourier transforms

被引:33
作者
Ruzzi, M. [1 ]
机构
[1] Univ Fed Sao Paulo, Inst Fis Teor, BR-01405900 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1063/1.2209770
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Properties of the Jacobi Theta(3)-function and its derivatives under discrete Fourier transforms are investigated, and several interesting results are obtained. The role of modulo N equivalence classes in the theory of Theta-functions is stressed. An important conjecture is studied. (c) 2006 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 20 条
[1]   Wigner distribution function for finite systems [J].
Atakishiyev, NM ;
Chumakov, SM ;
Wolf, KB .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6247-6261
[2]  
Bellman R., 1961, BRIEF INTRO THETA FU
[3]   EIGENVECTORS AND FUNCTIONS OF THE DISCRETE FOURIER-TRANSFORM [J].
DICKINSON, BW ;
STEIGLITZ, K .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (01) :25-31
[4]   Discrete coherent states and probability distributions in finite-dimensional spaces [J].
Galetti, D ;
Marchiolli, MA .
ANNALS OF PHYSICS, 1996, 249 (02) :454-480
[5]   Coherent states on the circle [J].
Gonzalez, JA ;
del Olmo, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (44) :8841-8857
[6]  
Green M., 1987, SUPERSTRING THEORY
[7]  
Green M., 1987, SUPERSTRING THEORY, V1
[8]  
Klimik A. U., 1992, REPRESENTATION LIE G
[9]   Coherent states for a quantum particle on a circle [J].
Kowalski, K ;
Rembielinski, J ;
Papaloucas, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14) :4149-4167
[10]   Extended Cahill-Glauber formalism for finite-dimensional spaces. II. Applications in quantum tomography and quantum teleportation [J].
Marchiolli, MA ;
Ruzzi, M ;
Galetti, D .
PHYSICAL REVIEW A, 2005, 72 (04)