Fabrication of suspended metal-dielectric-metal plasmonic nanostructures

被引:18
作者
Dong, Zhaogang [1 ]
Bosman, Michel [1 ]
Zhu, Di [1 ]
Goh, Xiao Ming [1 ]
Yang, Joel K. W. [1 ,2 ]
机构
[1] ASTAR, Inst Mat Res & Engn, Singapore 117602, Singapore
[2] Singapore Univ Technol & Design, Singapore 138682, Singapore
基金
新加坡国家研究基金会;
关键词
electron-beam lithography; self-aligned fabrication; double-sided patterning; electron energy-loss spectroscopy; plasmonic nanostructures; ENHANCED RAMAN-SCATTERING; SELF-ALIGNMENT; NANOANTENNAS; TRANSPARENCY; REALIZATION; GENERATION; MOLECULES;
D O I
10.1088/0957-4484/25/13/135303
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dipole nano-antennas have predominantly been investigated in their lateral orientation with their long axes in plane with a supporting substrate. However, the response of coupled dipole antennas oriented vertically to a supporting substrate has so far been out of experimental reach. Here, we present a self-aligned electron-beam lithography technique for fabricating such antennas consisting of metal nanostructures on both sides of a suspended silicon nitride membrane. This 30 nm thick membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the antenna feed-gap size in an array of antennas. It is also a suitable substrate for probing the nano-antenna response with monochromated electron energy-loss spectroscopy (EELS) in a transmission electron microscope. We provide details of this double-sided patterning process, and show the excitation of hybridized plasmon modes in EELS with electrons directed along, and at an angle to, the antenna axis.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[2]   Folded dipole plasmonic resonators [J].
Choonee, K. ;
Syms, R. R. A. .
OPTICS EXPRESS, 2013, 21 (22) :25841-25850
[3]   Optimal temperature for development of poly(methylmethacrylate) [J].
Cord, Bryan ;
Lutkenhaus, Jodie ;
Berggren, Karl K. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06) :2013-2016
[4]   Plasmonic laser antenna [J].
Cubukcu, Ertugrul ;
Kort, Eric A. ;
Crozier, Kenneth B. ;
Capasso, Federico .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[5]   Realization of a three-functional-layer negative-index photonic metamaterial [J].
Dolling, G. ;
Wegener, M. ;
Linden, S. .
OPTICS LETTERS, 2007, 32 (05) :551-553
[6]   Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas [J].
Duan, Huigao ;
Hu, Hailong ;
Hui, Hui Kim ;
Shen, Zexiang ;
Yang, Joel K. W. .
NANOTECHNOLOGY, 2013, 24 (18)
[7]   Nanoplasmonics: Classical down to the Nanometer Scale [J].
Duan, Huigao ;
Fernandez-Dominguez, Antonio I. ;
Bosman, Michel ;
Maier, Stefan A. ;
Yang, Joel K. W. .
NANO LETTERS, 2012, 12 (03) :1683-1689
[8]   Controlled Collapse of High-Aspect-Ratio Nanostructures [J].
Duan, Huigao ;
Yang, Joel K. W. ;
Berggren, Karl K. .
SMALL, 2011, 7 (18) :2661-2668
[9]   Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible [J].
Fromm, DP ;
Sundaramurthy, A ;
Schuck, PJ ;
Kino, G ;
Moerner, WE .
NANO LETTERS, 2004, 4 (05) :957-961
[10]   Influence of metallic and dielectric nanowire arrays on the photoluminescence properties of P3HT thin films [J].
Handloser, M. ;
Dunbar, R. B. ;
Wisnet, A. ;
Altpeter, P. ;
Scheu, C. ;
Schmidt-Mende, L. ;
Hartschuh, A. .
NANOTECHNOLOGY, 2012, 23 (30)