Implementation and performance of a general purpose graphics processing unit in hyperspectral image analysis

被引:2
作者
van der Werff, H. M. A. [1 ]
Bakker, W. H. [1 ]
机构
[1] Univ Twente, Fac Geoinformat Sci & Earth Observat, NL-7500 AE Enschede, Netherlands
来源
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION | 2014年 / 26卷
关键词
Hyperspectral; Classification; Graphicshardware; GPGPU; IDL; GPU;
D O I
10.1016/j.jag.2013.08.009
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A graphics processing unit (GPU) can perform massively parallel computations at relatively low cost. Software interfaces like NVIDIA CUDA allow for General Purpose computing on a GPU (GPGPU). Wrappers of the CUDA libraries for higher-level programming languages such as MATLAB and IDL allow its use in image processing. In this paper, we implement GPGPU in IDL with two distance measures frequently used in image classification, Euclidean distance and spectral angle, and apply these to hyperspectral imagery. First we vary the data volume of a synthetic dataset by changing the number of image pixels, spectral bands and classification endmembers to determine speed-up and to find the smallest data volume that would still benefit from using graphics hardware. Then we process real datasets that are too large to fit in the GPU memory, and study the effect of resulting extra data transfers on computing performance. We show that our GPU algorithms outperform the same algorithms for a central processor unit (CPU), that a significant speed-up can already be obtained on relatively small datasets, and that data transfers in large datasets do not significantly influence performance. Given that no specific knowledge on parallel computing is required for this implementation, remote sensing scientists should now be able to implement and use GPGPU for their data analysis. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:312 / 321
页数:10
相关论文
共 50 条
[41]   Real-Time Radar Signal Processing Using GPGPU (General-Purpose Graphic Processing Unit) [J].
Kong, Fanxing ;
Zhang, Yan ;
Cai, Jingxiao ;
Palmer, Robert D. .
RADAR SENSOR TECHNOLOGY XX, 2016, 9829
[42]   Graphics processing unit-accelerated high-quality watercolor painting image generation [J].
Huang, Jiamian ;
Ito, Yasuaki ;
Nakano, Koji .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (19)
[43]   Exploring Graphics Processing Unit (GPU) Resource Sharing Efficiency for High Performance Computing [J].
Li, Teng ;
Narayana, Vikram K. ;
El-Ghazawi, Tarek .
COMPUTERS, 2013, 2 (04) :176-214
[44]   A new diagonal storage for efficient implementation of sparse matrix-vector multiplication on graphics processing unit [J].
He, Guixia ;
Chen, Qi ;
Gao, Jiaquan .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (13)
[45]   GPU Implementation for Hyperspectral Image Analysis using Recursive Hierarchical Segmentation [J].
Hossam, Mahmoud A. ;
Ebied, Hala M. ;
Abdel-Aziz, Mohamed H. .
2012 SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES'2012), 2012, :195-200
[46]   Performance Evaluation of STBC-OFDM WiMAX System using Graphics Processing Unit (GPU) [J].
Yadav, Satyendra Singh ;
Patra, Sarat Kumar .
2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND APPLICATIONS (ICHPCA), 2014,
[47]   Modeling and analysis of performances for concurrent multithread applications on multicore and graphics processing unit systems [J].
Cerotti, D. ;
Gribaudo, M. ;
Iacono, M. ;
Piazzolla, P. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (02) :438-452
[48]   In-Datacenter Performance Analysis of a Tensor Processing Unit [J].
Jouppi, Norman P. ;
Young, Cliff ;
Patil, Nishant ;
Patterson, David ;
Agrawal, Gaurav ;
Bajwa, Raminder ;
Bates, Sarah ;
Bhatia, Suresh ;
Boden, Nan ;
Borchers, Al ;
Boyle, Rick ;
Cantin, Pierre-luc ;
Chao, Clifford ;
Clark, Chris ;
Coriell, Jeremy ;
Daley, Mike ;
Dau, Matt ;
Dean, Jeffrey ;
Gelb, Ben ;
Ghaemmaghami, Tara Vazir ;
Gottipati, Rajendra ;
Gulland, William ;
Hagmann, Robert ;
Ho, C. Richard ;
Hogberg, Doug ;
Hu, John ;
Hundt, Robert ;
Hurt, Dan ;
Ibarz, Julian ;
Jaffey, Aaron ;
Jaworski, Alek ;
Kaplan, Alexander ;
Khaitan, Harshit ;
Killebrew, Daniel ;
Koch, Andy ;
Kumar, Naveen ;
Lacy, Steve ;
Laudon, James ;
Law, James ;
Le, Diemthu ;
Leary, Chris ;
Liu, Zhuyuan ;
Lucke, Kyle ;
Lundin, Alan ;
MacKean, Gordon ;
Maggiore, Adriana ;
Mahony, Maire ;
Miller, Kieran ;
Nagarajan, Rahul ;
Narayanaswami, Ravi .
44TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2017), 2017, :1-12
[49]   Toward Automated Analysis of Electrocardiogram Big Data by Graphics Processing Unit for Mobile Health Application [J].
Fan, Xiaomao ;
Chen, Runge ;
He, Chenguang ;
Cai, Yunpeng ;
Wang, Pu ;
Li, Ye .
IEEE ACCESS, 2017, 5 :17136-17148
[50]   Graphics processing unit implementations of relative expression analysis algorithms enable dramatic computational speedup [J].
Magis, Andrew T. ;
Earls, John C. ;
Ko, Youn-Hee ;
Eddy, James A. ;
Price, Nathan D. .
BIOINFORMATICS, 2011, 27 (06) :872-873