Electromechanical response of ionic polymer-metal composites

被引:540
|
作者
Nemat-Nasser, S [1 ]
Li, JY [1 ]
机构
[1] Univ Calif San Diego, Ctr Excellence Adv Mat, La Jolla, CA 92093 USA
关键词
D O I
10.1063/1.372343
中图分类号
O59 [应用物理学];
学科分类号
摘要
An ionic polymer-metal composite (IPMC) consisting of a thin Nafion sheet, platinum plated on both faces, undergoes large bending motion when an electric field is applied across its thickness. Conversely, a voltage is produced across its faces when it is suddenly bent. A micromechanical model is developed which accounts for the coupled ion transport, electric field, and elastic deformation to predict the response of the IPMC, qualitatively and quantitatively. First, the basic three-dimensional coupled field equations are presented, and then the results are applied to predict the response of a thin sheet of an IPMC. Central to the theory is the recognition that the interaction between an imbalanced charge density and the backbone polymer can be presented by an eigenstress field (Nemat-Nasser and Hori, Micromechanics, Overall Properties of Heterogeneous Materials, 2nd Ed., Elsevier, Amsterdam, 1999). The constitutive parameter connecting the eigenstress to the charge density is calculated directly using a simple microstructural model for Nafion. The results are applied to predict the response of samples of IPMC, and good correlation with experimental data is obtained. Experiments show that the voltage induced by a sudden imposition of a curvature, is two orders of magnitude less than that required to produce the same curvature. The theory accurately predicts this result. The theory also shows the relative effects of different counter ions, e.g., sodium versus lithium, on the response of the composite to an applied voltage or a curvature. (C) 2000 American Institute of Physics. [S0021-8979(00)09005-8].
引用
收藏
页码:3321 / 3331
页数:11
相关论文
共 50 条
  • [21] Ionic polymer-metal composites: Manufacturing techniques
    Kim, KJ
    Shahinpoor, M
    SMART STRUCTURES AND MATERIALS 2002: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD), 2002, 4695 : 210 - 219
  • [22] Molecular dynamics of ionic polymer-metal composites
    Truszkowska, A.
    Porfiri, M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2208):
  • [23] Tailoring the actuation of ionic polymer-metal composites
    Nemat-Nasser, Sia
    Wu, Yongxian
    SMART MATERIALS AND STRUCTURES, 2006, 15 (04) : 909 - 923
  • [24] Ionic polymer-metal composites for underwater operation
    Kim, Kwang J.
    Yim, Woosoon
    Paquette, Jason W.
    Kim, Doyeon
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2007, 18 (02) : 123 - 131
  • [25] Modeling and optimization of the electromechanical behavior of an ionic polymer-metal composite
    Jo, Choonghee
    Naguib, Hani E.
    Kwon, Roy H.
    SMART MATERIALS & STRUCTURES, 2008, 17 (06):
  • [26] Electromechanical sensing of ionic polymer metal composites
    Cha, Youngsu
    Cellini, Filippo
    Porfiri, Maurizio
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2014, 2014, 9056
  • [27] Shape memory properties of ionic polymer-metal composites
    Rossiter, Jonathan
    Takashima, Kazuto
    Mukai, Toshiharu
    SMART MATERIALS AND STRUCTURES, 2012, 21 (11)
  • [28] IONIC POLYMER-METAL COMPOSITES (IPMCs) AS IMPACT SENSORS
    Seidi, M.
    Hajiaghamemar, M.
    Tabatabaie, E.
    Shahinpoor, M.
    ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2015, VOL 1, 2016,
  • [29] Adaptive intelligent control of ionic polymer-metal composites
    Lavu, BC
    Schoen, MP
    Mahajan, A
    SMART MATERIALS AND STRUCTURES, 2005, 14 (04) : 466 - 474
  • [30] Fluid flow sensing with ionic polymer-metal composites
    Stalbaum, Tyler
    Trabia, Sarah
    Shen, Qi
    Kim, Kwang J.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2016, 2016, 9798