Electromechanical response of ionic polymer-metal composites

被引:542
作者
Nemat-Nasser, S [1 ]
Li, JY [1 ]
机构
[1] Univ Calif San Diego, Ctr Excellence Adv Mat, La Jolla, CA 92093 USA
关键词
D O I
10.1063/1.372343
中图分类号
O59 [应用物理学];
学科分类号
摘要
An ionic polymer-metal composite (IPMC) consisting of a thin Nafion sheet, platinum plated on both faces, undergoes large bending motion when an electric field is applied across its thickness. Conversely, a voltage is produced across its faces when it is suddenly bent. A micromechanical model is developed which accounts for the coupled ion transport, electric field, and elastic deformation to predict the response of the IPMC, qualitatively and quantitatively. First, the basic three-dimensional coupled field equations are presented, and then the results are applied to predict the response of a thin sheet of an IPMC. Central to the theory is the recognition that the interaction between an imbalanced charge density and the backbone polymer can be presented by an eigenstress field (Nemat-Nasser and Hori, Micromechanics, Overall Properties of Heterogeneous Materials, 2nd Ed., Elsevier, Amsterdam, 1999). The constitutive parameter connecting the eigenstress to the charge density is calculated directly using a simple microstructural model for Nafion. The results are applied to predict the response of samples of IPMC, and good correlation with experimental data is obtained. Experiments show that the voltage induced by a sudden imposition of a curvature, is two orders of magnitude less than that required to produce the same curvature. The theory accurately predicts this result. The theory also shows the relative effects of different counter ions, e.g., sodium versus lithium, on the response of the composite to an applied voltage or a curvature. (C) 2000 American Institute of Physics. [S0021-8979(00)09005-8].
引用
收藏
页码:3321 / 3331
页数:11
相关论文
共 33 条
[1]  
[Anonymous], 1973, THEORY ELECT POLARIZ
[2]   THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (02) :182-185
[3]  
CHESTON WB, 1964, ELEMENTARY THEORY EL
[4]  
Eisenberg A., 1970, MACROMOLECULES, V3, P147, DOI DOI 10.1021/MA60014A006
[5]   THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS [J].
ESHELBY, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226) :376-396
[6]   EFFECT OF SEGMENT - SEGMENT ASSOCIATION ON CHAIN DIMENSIONS [J].
FORSMAN, WC .
MACROMOLECULES, 1982, 15 (04) :1032-1040
[7]   THE MORPHOLOGY IN NAFION PERFLUORINATED MEMBRANE PRODUCTS, AS DETERMINED BY WIDE-ANGLE AND SMALL-ANGLE X-RAY STUDIES [J].
GIERKE, TD ;
MUNN, GE ;
WILSON, FC .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1981, 19 (11) :1687-1704
[8]   KINETICS OF ELECTRICALLY AND CHEMICALLY-INDUCED SWELLING IN POLYELECTROLYTE GELS [J].
GRIMSHAW, PE ;
NUSSBAUM, JH ;
GRODZINSKY, AJ ;
YARMUSH, ML .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (06) :4462-4472
[9]   Recent advances in perfluorinated ionomer membranes: Structure, properties and applications [J].
HeitnerWirguin, C .
JOURNAL OF MEMBRANE SCIENCE, 1996, 120 (01) :1-33
[10]   ELASTIC THEORY FOR IONIC CLUSTERING IN PERFLUORINATED IONOMERS [J].
HSU, WY ;
GIERKE, TD .
MACROMOLECULES, 1982, 15 (01) :101-105