Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures

被引:2
作者
Chen, Mingsong [1 ]
Pan, Lulu [1 ,2 ]
Lu, Yuanfu [2 ]
Li, Guangyuan [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
plasmonic devices; Bragg reflectors; unidirectional reflection; asymmetric nanostructures; DESIGN;
D O I
10.1088/1674-1056/28/7/074208
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Plasmonic Bragg reflectors are essential components in plasmonic circuits. Here we propose a novel type of plasmonic Bragg reflector, which has very high reflectance for the right-side incidence and meanwhile has extremely large absorption for the left-side incidence. This device is composed of longitudinally asymmetric nanostructures in a metal-insulator- metal waveguide. In order to efficiently analyze, design, and optimize the reflection and transmission characteristics of the proposed device, we develop a semi-analytic coupled-mode model. Results show that the reflectance extinction ratio between plasmonic modes incident from the right-side and the left-side reaches 11 dB. We expect this device with such striking unidirectional reflection performance can be used as insulators in nanoplasmonic circuts.
引用
收藏
页数:4
相关论文
共 30 条
[1]   Plasmonic reflectors and high-Q nano-cavities based on coupled metal-insulator-metal waveguides [J].
Chen, Jing ;
Yang, Jian ;
Chen, Zhuo ;
Fang, Yi-Jiao ;
Zhan, Peng ;
Wang, Zhen-Lin .
AIP ADVANCES, 2012, 2 (01)
[2]   Rainbow trapping based on long-range plasmonic Bragg gratings at telecom frequencies [J].
Chen, Lin ;
Zhang, Tian ;
Li, Xun .
CHINESE PHYSICS B, 2013, 22 (07)
[3]  
Edwards D.F., 1985, Handbook of optical constants of solids
[4]   Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits [J].
Fang, Yurui ;
Sun, Mengtao .
LIGHT-SCIENCE & APPLICATIONS, 2015, 4 :e294-e294
[5]   Asymmetric propagation of electromagnetic waves through a planar chiral structure [J].
Fedotov, V. A. ;
Mladyonov, P. L. ;
Prosvirnin, S. L. ;
Rogacheva, A. V. ;
Chen, Y. ;
Zheludev, N. I. .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[6]   Plasmonics beyond the diffraction limit [J].
Gramotnev, Dmitri K. ;
Bozhevolnyi, Sergey I. .
NATURE PHOTONICS, 2010, 4 (02) :83-91
[7]   Radiation guiding with surface plasmon polaritons [J].
Han, Zhanghua ;
Bozhevolnyi, Sergey I. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (01)
[8]   Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors [J].
Hosseini, Amir ;
Nejati, Hamid ;
Massoud, Yehia .
OPTICS EXPRESS, 2008, 16 (03) :1475-1480
[9]   Analysis of a Triangular-shaped Plasmonic Metal-Insulator-Metal Bragg Grating Waveguide [J].
Jafarian, Behnaz ;
Nozhat, Najmeh ;
Granpayeh, Nosrat .
JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2011, 15 (02) :118-123
[10]   A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors [J].
Li, Guangyuan ;
Cai, Lin ;
Xiao, Feng ;
Pei, Yijian ;
Xu, Anshi .
OPTICS EXPRESS, 2010, 18 (10) :10487-10499