Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness

被引:119
|
作者
Solberg, Klas [1 ]
Guan, Shuai [2 ]
Razavi, Nima [1 ]
Welo, Torgeir [1 ]
Chan, Kang Cheung [2 ]
Berto, Filippo [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Mech & Ind Engn, Richard Birkelandsvei 2b, N-7034 Trondheim, Norway
[2] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Peoples R China
关键词
316L stainless steel; fatigue; porosity; selective laser melting; surface roughness; HIGH-CYCLE FATIGUE; BEHAVIOR; TI-6AL-4V; STRENGTH; FRACTURE; LIFE;
D O I
10.1111/ffe.13077
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The fatigue behaviour of additively manufactured (AM) 316L stainless steel is investigated with the main emphasis on internal porosity and surface roughness. A transition between two cases of failure are found: failure from defects in the surface region and failure from the internal defects. At low applied load level (and consequently a high number of cycles to failure), fatigue is initiating from defects in the surface region, while for high load levels, fatigue is initiating from internal defects. Porosities captured by X-ray computed tomography (XCT) are compared with the defects initiating fatigue cracks, obtained from fractography. The fatigue data are synthesised using stress intensity factor (SIF) of the internal and surface defects on the fracture surface.
引用
收藏
页码:2043 / 2052
页数:10
相关论文
共 50 条
  • [41] The effects of geometry and laser power on the porosity and melt pool formation in additively manufactured 316L stainless steel
    Sebastiano Piazza
    Brian Merrigan
    Denis P. Dowling
    Mert Celikin
    The International Journal of Advanced Manufacturing Technology, 2020, 111 : 1457 - 1470
  • [42] The effects of geometry and laser power on the porosity and melt pool formation in additively manufactured 316L stainless steel
    Piazza, Sebastiano
    Merrigan, Brian
    Dowling, Denis P.
    Celikin, Mert
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 111 (5-6): : 1457 - 1470
  • [43] Nanoindentation Hardness and Corrosion Studies of Additively Manufactured 316L Stainless Steel
    England, Jennifer
    Uddin, Mohammad J.
    Ramirez-Cedillo, Erick
    Karunarathne, Darshan
    Nasrazadani, Seifollah
    Golden, Teresa D.
    Siller, Hector R.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (08) : 6795 - 6805
  • [44] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Shamsujjoha, Md.
    Agnew, Sean R.
    Fitz-Gerald, James M.
    Moore, William R.
    Newman, Tabitha A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (07): : 3011 - 3027
  • [45] Mechanisms controlling fracture toughness of additively manufactured stainless steel 316L
    Deepak Kumar
    Suyog Jhavar
    Abhinav Arya
    K. G. Prashanth
    Satyam Suwas
    International Journal of Fracture, 2022, 235 : 61 - 78
  • [46] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Md. Shamsujjoha
    Sean R. Agnew
    James M. Fitz-Gerald
    William R. Moore
    Tabitha A. Newman
    Metallurgical and Materials Transactions A, 2018, 49 : 3011 - 3027
  • [47] Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L
    Bertsch, K. M.
    de Bellefon, G. Meric
    Kuehl, B.
    Thoma, D. J.
    ACTA MATERIALIA, 2020, 199 (199) : 19 - 33
  • [48] Texture dependent strain hardening in additively manufactured stainless steel 316L
    Kumar, Deepak
    Shankar, Gyan
    Prashanth, K. G.
    Suwas, Satyam
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 820
  • [49] Ballistic Performance of Additively Manufactured 316L Stainless Steel Spherical Fragments
    Xue H.
    Wang T.
    Huang G.
    Cui X.
    Han H.
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (02): : 395 - 406
  • [50] Nanoindentation Hardness and Corrosion Studies of Additively Manufactured 316L Stainless Steel
    Jennifer England
    Mohammad J. Uddin
    Erick Ramirez-Cedillo
    Darshan Karunarathne
    Seifollah Nasrazadani
    Teresa D. Golden
    Hector R. Siller
    Journal of Materials Engineering and Performance, 2022, 31 : 6795 - 6805