Simulation of Electrochemical Double Layer Formation with Complex Geometries

被引:6
|
作者
Qu, Danqi [1 ]
Termuhlen, Robert [2 ]
Yu, Hui-Chia [1 ,2 ]
机构
[1] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Computat Math, E Lansing, MI 48824 USA
关键词
EDLC; electrochemical capacitors; theory and modelling; Nernst-Planck-Poisson; smoothed boundary method; adaptive mesh refinement; FINITE-DIFFERENCE SCHEME; POROUS-ELECTRODES; MONTE-CARLO; MODEL; DIFFUSION; POISSON; VOLTAMMETRY; CAPACITANCE; ENERGY;
D O I
10.1149/1945-7111/abc0ab
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A novel method is introduced to simulate the formation of electrochemical double layers on complex electrode particle geometries. Electrochemical double layers play the most crucial role in electrical energy storage of supercapacitors and in capacitive deionization (desalination) devices. The double-layer region usually spans 20 to 50 nanometers, whereas other significant length scales, e.g., particle size or inter-particle space in electrodes, are in tens to hundreds of microns. Thus, a direct numerical simulation in the continuum scale must resolve the ionic concentration and potential gradients in spatial scales across 3 similar to 4 orders of magnitude difference and is highly challenging. In this paper, we use the smoothed boundary method that defines complex microstructures with a continuous domain-parameter function to reformulate the Nernst-Planck-Poisson equations and solve the reformulated governing equations on adaptively refined meshes. The method allows for accurate simulations of arbitrarily complex geometries with resolutions spanning from nanometers in the double layer to micron/millimeters in the particle/electrode scales. The results show that ions first rapidly adsorb onto or are repelled from the particle surfaces, followed by long-distance diffusion to alleviate the concentration gradient until the system reaches the steady state. The concentration and potential evolutions highly depend on the particle geometries.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Exploring how cation entropy influences electric double layer formation and electrochemical reactivity
    Liu, Beichen
    Guo, Wenxiao
    Anderson, Seth R.
    Johnstone, Samuel G.
    Wu, Siqi
    Herrington, Megan C.
    Gebbie, Matthew A.
    SOFT MATTER, 2024, 20 (02) : 351 - 364
  • [22] THE ELECTROCHEMICAL DOUBLE LAYER ON SILVER SULFIDE
    FREYBERGER, WL
    DEBRUYN, PL
    JOURNAL OF PHYSICAL CHEMISTRY, 1957, 61 (05): : 586 - 592
  • [23] Overview of electrochemical double layer capacitors
    Cahela, Donald R.
    Tatarchuk, Bruce J.
    IECON Proceedings (Industrial Electronics Conference), 1997, 3 : 1068 - 1073
  • [24] Ageing of electrochemical double layer capacitors
    Bittner, A. M.
    Zhu, M.
    Yang, Y.
    Waibel, H. F.
    Konuma, M.
    Starke, U.
    Weber, C. J.
    JOURNAL OF POWER SOURCES, 2012, 203 : 262 - 273
  • [25] ELECTROCARDIOGRAPHY AND THE ELECTROCHEMICAL DOUBLE-LAYER
    FINDL, E
    MILCH, PO
    KURTZ, RJ
    MOORE, CB
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (03) : C130 - C130
  • [26] Overview of electrochemical double layer capacitors
    Cahela, DR
    Tatarchuk, BJ
    IECON '97 - PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUMENTATION, VOLS. 1-4, 1997, : 1068 - 1073
  • [27] Double layer capacitance in electrochemical biosensor
    Cheng, ZL
    Yang, XR
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2000, 28 (08) : 1037 - 1041
  • [28] Capacitance of electrochemical double layer capacitors
    Lewandowski, Andrzej
    Jakobczyk, Pawel
    Galinski, Maciej
    ELECTROCHIMICA ACTA, 2012, 86 : 225 - 231
  • [29] Numerical simulation of the aluminum alloys solidification in complex geometries
    Eliscu Monteiro
    Abel Rouboa
    Journal of Mechanical Science and Technology, 2005, 19 : 1773 - 1780
  • [30] Two dimensional simulation of gas detonations in complex geometries
    Zhong Shengjun
    Andrzej, Teodorczyk
    Deng Xufan
    Dang Junxiang
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL 6, PTS A AND B, 2006, 6 : 1258 - 1263