Topological states at exceptional points

被引:5
作者
Yuce, C. [1 ]
机构
[1] Eskisehir Tech Univ, Dept Phys, Eskisehir, Turkey
关键词
Non-Hermitian topological phase; Non-Hermitian topological insulators; PT symmetry; PHASE;
D O I
10.1016/j.physleta.2019.05.031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an N-level non-Hermitian Hamiltonian with an exceptional point of order N. We define adiabatic equivalence in such systems and explore topological phase. We show that the topological exceptional states appear at the interface of topologically distinct systems. We discuss that topological states appear even in closed systems. We explore dynamical robustness of exceptional edge states. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:2567 / 2570
页数:4
相关论文
共 60 条
[1]   Robustness of symmetry-protected topological states against time-periodic perturbations [J].
Balabanov, Oleksandr ;
Johannesson, Henrik .
PHYSICAL REVIEW B, 2017, 96 (03)
[2]  
Bian Z., ARXIV190309806
[3]   Symmetry-protected nodal phases in non-Hermitian systems [J].
Budich, Jan Carl ;
Carlstrom, Johan ;
Kunst, Fiore K. ;
Bergholtz, Emil J. .
PHYSICAL REVIEW B, 2019, 99 (04)
[4]   Coalescence of exceptional points and phase diagrams for one-dimensional PT-symmetric photonic crystals [J].
Ding, Kun ;
Zhang, Z. Q. ;
Chan, C. T. .
PHYSICAL REVIEW B, 2015, 92 (23)
[5]   Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence [J].
Edvardsson, Elisabet ;
Kunst, Flore K. ;
Bergholtz, Emil J. .
PHYSICAL REVIEW B, 2019, 99 (08)
[6]  
Ghatak A., 2019, ARXIV190207972
[7]   A note on the topological insulator phase in non-Hermitian quantum systems [J].
Ghosh, Pijush K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (14)
[8]  
Gupta S. K., ARXIV180300794
[9]   Dynamically Encircling Exceptional Points: Exact Evolution and Polarization State Conversion [J].
Hassan, Absar U. ;
Zhen, Bo ;
Soljacic, Marin ;
Khajavikhan, Mercedeh ;
Christodoulides, Demetrios N. .
PHYSICAL REVIEW LETTERS, 2017, 118 (09)
[10]   The physics of exceptional points [J].
Heiss, W. D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)