Fuzzy necessary optimality conditions for vector optimization problems

被引:46
作者
Durea, Marius [2 ]
Tammer, Christiane [1 ]
机构
[1] Univ Halle Wittenberg, Inst Math, Halle, Saale, Germany
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi, Romania
关键词
Lagrange multiplier rules; non-convex separation technique; abstract subdifferential; vector optimization; SUBDIFFERENTIAL CALCULUS; DOWNWARD SETS; SPACES; SEPARATION;
D O I
10.1080/02331930701761615
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The primary aim of this article is to derive Lagrange multiplier rules for vector optimization problems using a non-convex separation technique and the concept of abstract subdifferential. Furthermore, we present a method of estimation of the norms of such multipliers in very general cases and for many particular subdifferentials.
引用
收藏
页码:449 / 467
页数:19
相关论文
共 35 条
[1]  
[Anonymous], 2003, Variational Methods in Partially Ordered Spaces
[2]  
[Anonymous], 2006, SERIES COMPREHENSIVE
[3]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[4]  
Aubin J.-P., 1990, Set-Valued Analysis, DOI 10.1007/978-0-8176-4848-0
[5]   A survey of subdifferential calculus with applications [J].
Borwein, JM ;
Zhu, QJJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (06) :687-773
[6]  
Clarke F. H., 1998, Graduate Texts in Mathematics, V178
[7]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[8]  
CLARKE FH, 1974, MATH APPL, V47, P324
[9]  
Deville R., 1996, J CONVEX ANAL, V3, P259
[10]  
Dolecki S., 1993, Optimization, V27, P97, DOI 10.1080/02331939308843875