A generalization of the Craig-Sakamoto theorem to Euclidean Jordan algebras

被引:1
|
作者
Tao, J. [1 ]
Wang, Guoqiang [2 ]
机构
[1] Loyola Univ Maryland, Dept Math & Stat, Baltimore, MD 21210 USA
[2] Shanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Euclidean Jordan algebra; Quadratic representation; Craig-Sakamoto theorem; LINEAR TRANSFORMATIONS; P-PROPERTIES; SIMPLE PROOF; INEQUALITIES;
D O I
10.1016/j.laa.2015.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Letac and Massam [10] extended the Craig-Sakamoto theorem to Euclidean Jordan algebras. In this paper, we give another proof of this generalization by reformulating the result in terms of rank and determinant equalities and by proving the result in each of the simple Euclidean Jordan algebras. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 145
页数:12
相关论文
共 50 条
  • [41] Pseudomonotonicity of Nonlinear Transformations on Euclidean Jordan Algebras
    Yuan-Min LI
    Acta Mathematicae Applicatae Sinica, 2024, 40 (01) : 192 - 204
  • [42] CONDITION NUMBER MINIMIZATION IN EUCLIDEAN JORDAN ALGEBRAS
    Seeger, Alberto
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 635 - 658
  • [43] Proscribed Normal Decompositions of Euclidean Jordan Algebras
    Orlitzky, Michael
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (03) : 755 - 766
  • [44] Some majorization inequalities in Euclidean Jordan algebras
    Tao, J.
    Kong, Lingchen
    Luo, Ziyan
    Xiu, Naihua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 461 : 92 - 122
  • [45] On perturbation bounds of eigenvalues in Euclidean Jordan Algebras
    Seltzer, Kevin
    Tao, J.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07): : 1379 - 1389
  • [46] Sufficiency of linear transformations on Euclidean Jordan algebras
    Linxia Qin
    Lingchen Kong
    Jiye Han
    Optimization Letters, 2009, 3 : 265 - 276
  • [47] GENERALIZED KEPLER PROBLEMS AND EUCLIDEAN JORDAN ALGEBRAS
    Meng, Guowu
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 72 - 94
  • [48] Sufficiency of linear transformations on Euclidean Jordan algebras
    Qin, Linxia
    Kong, Lingchen
    Han, Jiye
    OPTIMIZATION LETTERS, 2009, 3 (02) : 265 - 276
  • [49] Spectral sets and functions on Euclidean Jordan algebras
    Jeong, Juyoung
    Gowda, M. Seetharama
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 518 : 31 - 56
  • [50] CRAIG THEOREM - PROOF AND GENERALIZATION TO LAMBDA-CALCULUS
    BELLOT, P
    JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (03) : 835 - 835