A generalization of the Craig-Sakamoto theorem to Euclidean Jordan algebras

被引:1
|
作者
Tao, J. [1 ]
Wang, Guoqiang [2 ]
机构
[1] Loyola Univ Maryland, Dept Math & Stat, Baltimore, MD 21210 USA
[2] Shanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Euclidean Jordan algebra; Quadratic representation; Craig-Sakamoto theorem; LINEAR TRANSFORMATIONS; P-PROPERTIES; SIMPLE PROOF; INEQUALITIES;
D O I
10.1016/j.laa.2015.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Letac and Massam [10] extended the Craig-Sakamoto theorem to Euclidean Jordan algebras. In this paper, we give another proof of this generalization by reformulating the result in terms of rank and determinant equalities and by proving the result in each of the simple Euclidean Jordan algebras. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 145
页数:12
相关论文
共 50 条
  • [21] On a ternary generalization of Jordan algebras
    Kaygorodov, Ivan
    Pozhidaev, Alexander
    Saraiva, Paulo
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (06): : 1074 - 1102
  • [22] GENERALIZATION OF NONCOMMUTATIVE JORDAN ALGEBRAS
    FLOREY, FG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A81 - &
  • [23] Spectral cones in Euclidean Jordan algebras
    Jeong, Juyoung
    Gowda, M. Seetharama
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 509 : 286 - 305
  • [24] PSEUDO-EUCLIDEAN JORDAN ALGEBRAS
    Baklouti, Amir
    Benayadi, Said
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) : 2094 - 2123
  • [25] Composites and Categories of Euclidean Jordan Algebras
    Barnum, Howard
    Graydon, Matthew A.
    Wilce, Alexander
    QUANTUM, 2020, 4
  • [26] Rank computation in Euclidean Jordan algebras
    Orlitzky, Michael
    JOURNAL OF SYMBOLIC COMPUTATION, 2022, 113 : 181 - 192
  • [27] Sparse recovery on Euclidean Jordan algebras
    Kong, Lingchen
    Sun, Jie
    Tao, Jiyuan
    Xiu, Naihua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 465 : 65 - 87
  • [28] Liouville theorem for Jordan algebras
    Bertram, W
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1996, 124 (02): : 299 - 327
  • [29] A THEOREM ON THE DERIVATIONS OF JORDAN ALGEBRAS
    SCHAFER, RD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (02) : 290 - 294
  • [30] MALCEVS THEOREM FOR JORDAN ALGEBRAS
    MCCRIMMON, K
    COMMUNICATIONS IN ALGEBRA, 1977, 5 (09) : 937 - 967