An Lp version of the Hardy theorem for motion groups

被引:22
作者
Eguchi, M
Koizumi, S
Kumahara, K
机构
[1] Hiroshima Univ, Fac Integrated Arts & Sci, Higashihiroshima 7398521, Japan
[2] Onomichi Jr Coll, Onomichi 7228506, Japan
[3] Univ Air, Chiba 2618586, Japan
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 2000年 / 68卷
关键词
uncertainty principle; Hardy theorem; motion group;
D O I
10.1017/S1446788700001579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a generalization of the Hardy theorem on the motion group. We prove that for some weight functions v, w growing very rapidly and a measurable function f, the finiteness of the L-p-norm of vf and the L-q-norm of w (f) over cap implies f = 0 (almost everywhere).
引用
收藏
页码:55 / 67
页数:13
相关论文
共 9 条
[1]   SUPPORT PROPERTIES OF LP-FUNCTIONS AND THEIR FOURIER-TRANSFORMS [J].
AMREIN, WO ;
BERTHIER, AM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (03) :258-267
[2]  
COWLING M, 1983, LECT NOTES MATH, V992, P443
[3]  
Dym H, 1972, Fourier Series and Integrals
[4]  
Eguchi M, 1998, P JPN ACAD A-MATH, V74, P149
[5]  
EGUCHI M, 1980, HIROSHIMA MATH J, V10, P691
[6]  
KUMAHARA K, 1976, J MATH SOC JAPAN, V26, P18
[7]   An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups [J].
Sitaram, A ;
Sundari, M .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 177 (01) :187-200
[8]   Hardy's theorem for the n-dimensional Euclidean motion group [J].
Sundari, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) :1199-1204
[9]  
Warner G., 1972, HARMONIC ANAL SEMISI, VI