Time integration;
Initial value problems;
High order accuracy;
Initial boundary value problems;
Boundary conditions;
Global methods;
Stability;
Convergence;
Summation-by-parts operators;
Stiff problems;
SUMMATION-BY-PARTS;
ORDINARY DIFFERENTIAL-EQUATIONS;
RUNGE-KUTTA SCHEMES;
BOUNDARY-CONDITIONS;
TIME;
ACCURACY;
ORDER;
DISCRETIZATIONS;
STABILITY;
OPERATORS;
D O I:
10.1016/j.jcp.2014.03.048
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
A detailed account of the stability and accuracy properties of the SBP-SAT technique for numerical time integration is presented. We show how the technique can be used to formulate both global and multi-stage methods with high order of accuracy for both stiff and non-stiff problems. Linear and non-linear stability results, including A-stability, L-stability and B-stability are proven using the energy method for general initial value problems. Numerical experiments corroborate the theoretical properties. (C) 2014 Elsevier Inc. All rights reserved.
机构:
Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, SwedenUppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
Eriksson, Sofia
;
Nordstrom, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
Swedish Def Res Agcy, FOI, Dept Aeronaut & Syst Integrat, SE-16490 Stockholm, SwedenUppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
机构:
Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, SwedenUppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
Eriksson, Sofia
;
Nordstrom, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
Swedish Def Res Agcy, FOI, Dept Aeronaut & Syst Integrat, SE-16490 Stockholm, SwedenUppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden