All-passive pixel super-resolution of time-stretch imaging

被引:14
作者
Chan, Antony C. S. [1 ,2 ]
Ho-Cheung Ng [1 ,3 ]
Bogaraju, Sharat C. V. [1 ,4 ]
So, Hayden K. H. [1 ]
Lam, Edmund Y. [1 ]
Tsia, Kevin K. [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam, Hong Kong, Peoples R China
[2] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[3] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[4] Indian Inst Space Sci & Technol, Trivandrum 695547, Kerala, India
基金
中国国家自然科学基金;
关键词
SWEPT SOURCE; MICROSCOPY; LASER;
D O I
10.1038/srep44608
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate - hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (approximate to 2-5GSa/s)-more than four times lower than the originally required readout rate (20 GSa/s) - is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[2]   Snapshot spectrally encoded fluorescence imaging through a fiber bundle [J].
Bedard, Noah ;
Tkaczyk, Tomasz S. .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (08)
[3]  
Beets K., 2000, TECH REP
[4]   Video super-resolution using controlled subpixel detector shifts [J].
Ben-Ezra, M ;
Zomet, A ;
Nayar, SK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (06) :977-987
[5]   High-speed flow microscopy using compressed sensing with ultrafast laser pulses [J].
Bosworth, Bryan T. ;
Stroud, Jasper R. ;
Tran, Dung N. ;
Tran, Trac D. ;
Chin, Sang ;
Foster, Mark A. .
OPTICS EXPRESS, 2015, 23 (08) :10521-10532
[6]   High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals [J].
Bosworth, Bryan T. ;
Foster, Mark A. .
OPTICS LETTERS, 2013, 38 (22) :4892-4895
[7]  
CASPER, 2016, TECH REP
[8]  
Chan A. C., 2015, C OPT LIF SCI, DOI [10.1364/boda.2015.bw2a.7, DOI 10.1364/BODA.2015.BW2A.7]
[9]   Deep Learning in Label-free Cell Classification [J].
Chen, Claire Lifan ;
Mahjoubfar, Ata ;
Tai, Li-Chia ;
Blaby, Ian K. ;
Huang, Allen ;
Niazi, Kayvan Reza ;
Jalali, Bahram .
SCIENTIFIC REPORTS, 2016, 6
[10]  
Chen H., 2014, C LAS EL, P6, DOI [10.1364/CLEO_AT.2014.JTh2A.132, DOI 10.1364/CLEO_AT.2014.JTH2A.132]