Geometry of matrix product states: Metric, parallel transport, and curvature

被引:43
作者
Haegeman, Jutho [1 ,2 ]
Marien, Michael [2 ]
Osborne, Tobias J. [3 ,4 ]
Verstraete, Frank [1 ,2 ]
机构
[1] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol, A-1010 Vienna, Austria
[2] Univ Ghent, Fac Phys & Astron, B-9000 Ghent, Belgium
[3] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[4] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, D-30167 Hannover, Germany
关键词
QUANTUM RENORMALIZATION-GROUPS; BOND GROUND-STATES; SPIN SYSTEMS; ANTIFERROMAGNETS; ALGORITHMS; DYNAMICS; TENSORS; LATTICE; CHAINS;
D O I
10.1063/1.4862851
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kahler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold, which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:50
相关论文
共 64 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[3]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[4]   INFRARED CATASTROPHE IN FERMI GASES WITH LOCAL SCATTERING POTENTIALS [J].
ANDERSON, PW .
PHYSICAL REVIEW LETTERS, 1967, 18 (24) :1049-&
[5]  
Arrighi P, 2004, ANN PHYS-NEW YORK, V311, P26, DOI 10.1006/j.aop.2003.11.005
[6]  
Ashtekar A., 1997, ARXIVGRQC9706069
[7]   DIMERS ON A RECTANGULAR LATTICE [J].
BAXTER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (04) :650-&
[8]  
Bhatia R., 1996, MATRIX ANAL
[9]   Geometric quantum mechanics [J].
Brody, DC ;
Hughston, LP .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (01) :19-53
[10]   Classification of gapped symmetric phases in one-dimensional spin systems [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2011, 83 (03)