Finite-time synchronization of fractional-order simplest two-component chaotic oscillators

被引:32
作者
Kengne, Romanic [1 ,2 ]
Tchitnga, Robert [1 ,2 ]
Mezatio, Anicet [1 ,2 ]
Fomethe, Anaclet [3 ]
Litak, Grzegorz [4 ,5 ]
机构
[1] Univ Dschang, Dept Phys, Fac Sci, Res Grp Expt & Appl Phys Sustainable Dev, POB 412, Dschang, Cameroon
[2] Univ Dschang, Dept Phys, Fac Sci, Lab Elect & Signal Proc, POB 67, Dschang, Cameroon
[3] Univ Dschang, Dept Phys, Fac Sci, Lab Mecan & Modelisat Syst,L2MS, POB 67, Dschang, Cameroon
[4] Lublin Univ Technol, Fac Mech Engn, Nadbystrzycka 36, PL-20618 Lublin, Poland
[5] AGH Univ Sci & Technol, Fac Mech Engn & Robot, Dept Proc Control, Mickiewicza 30, PL-30059 Krakow, Poland
关键词
SYSTEMS; DYNAMICS;
D O I
10.1140/epjb/e2017-70470-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The problem of finite-time synchronization of fractional-order simplest two-component chaotic oscillators operating at high frequency and application to digital cryptography is addressed. After the investigation of numerical chaotic behavior in the system, an adaptive feedback controller is designed to achieve the finite-time synchronization of two oscillators, based on the Lyapunov function. This controller could find application in many other fractional-order chaotic circuits. Applying synchronized fractional-order systems in digital cryptography, a well secured key system is obtained. Numerical simulations are given to illustrate and verify the analytic results.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Finite-time H∞ control of uncertain fractional-order neural networks [J].
Thuan, Mai Viet ;
Sau, Nguyen Huu ;
Huyen, Nguyen Thi Thanh .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)
[32]   Finite-time synchronisation of delayed fractional-order coupled neural networks [J].
Zhang, Shuailei ;
Liu, Xinge ;
Li, Xuemei .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (12) :2597-2611
[33]   Finite-time stability analysis of fractional-order neural networks with delay [J].
Yang, Xujun ;
Song, Qiankun ;
Liu, Yurong ;
Zhao, Zhenjiang .
NEUROCOMPUTING, 2015, 152 :19-26
[34]   New results on finite-time stability for fractional-order neural networks with proportional delay [J].
Yang, Zhanying ;
Zhang, Jie ;
Hu, Junhao ;
Mei, Jun .
NEUROCOMPUTING, 2021, 442 :327-336
[35]   Hidden Chaotic Attractors and Synchronization for a New Fractional-Order Chaotic System [J].
Wang, Zuoxun ;
Liu, Jiaxun ;
Zhang, Fangfang ;
Leng, Sen .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (08)
[36]   Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights [J].
Xu, Yao ;
Li, Yanzhen ;
Li, Wenxue .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 85
[37]   Finite-time synchronization of delayed fractional-order quaternion-valued memristor-based neural networks [J].
Ding, Dawei ;
You, Ziruo ;
Hu, Yongbing ;
Yang, Zongli ;
Ding, Lianghui .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (03)
[38]   Finite-time synchronization of multi-weighted fractional-order coupled neural networks with fixed and adaptive couplings [J].
Ma, Ben ;
Tong, Dongbing ;
Chen, Qiaoyu ;
Zhou, Wuneng ;
Wei, Yunbing .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (10) :2364-2382
[39]   Fractional-Order Degn-Harrison Reaction-Diffusion Model: Finite-Time Dynamics of Stability and Synchronization [J].
Abu Hammad, Ma'mon ;
Bendib, Issam ;
Alshanti, Waseem Ghazi ;
Alshanty, Ahmad ;
Ouannas, Adel ;
Hioual, Amel ;
Momani, Shaher .
COMPUTATION, 2024, 12 (07)
[40]   Finite-time synchronization for fractional-order memristor-based neural networks with discontinuous activations and multiple delays [J].
Ding, Dawei ;
You, Ziruo ;
Hu, Yongbing ;
Yang, Zongli ;
Ding, Lianghui .
MODERN PHYSICS LETTERS B, 2020, 34 (15)