Finite-time synchronization of fractional-order simplest two-component chaotic oscillators

被引:32
作者
Kengne, Romanic [1 ,2 ]
Tchitnga, Robert [1 ,2 ]
Mezatio, Anicet [1 ,2 ]
Fomethe, Anaclet [3 ]
Litak, Grzegorz [4 ,5 ]
机构
[1] Univ Dschang, Dept Phys, Fac Sci, Res Grp Expt & Appl Phys Sustainable Dev, POB 412, Dschang, Cameroon
[2] Univ Dschang, Dept Phys, Fac Sci, Lab Elect & Signal Proc, POB 67, Dschang, Cameroon
[3] Univ Dschang, Dept Phys, Fac Sci, Lab Mecan & Modelisat Syst,L2MS, POB 67, Dschang, Cameroon
[4] Lublin Univ Technol, Fac Mech Engn, Nadbystrzycka 36, PL-20618 Lublin, Poland
[5] AGH Univ Sci & Technol, Fac Mech Engn & Robot, Dept Proc Control, Mickiewicza 30, PL-30059 Krakow, Poland
关键词
SYSTEMS; DYNAMICS;
D O I
10.1140/epjb/e2017-70470-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The problem of finite-time synchronization of fractional-order simplest two-component chaotic oscillators operating at high frequency and application to digital cryptography is addressed. After the investigation of numerical chaotic behavior in the system, an adaptive feedback controller is designed to achieve the finite-time synchronization of two oscillators, based on the Lyapunov function. This controller could find application in many other fractional-order chaotic circuits. Applying synchronized fractional-order systems in digital cryptography, a well secured key system is obtained. Numerical simulations are given to illustrate and verify the analytic results.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Finite-time cluster synchronization of multi-weighted fractional-order coupled neural networks with and without impulsive effects [J].
Nie, Huining ;
Zhang, Yu .
NEURAL NETWORKS, 2024, 180
[22]   Finite-time synchronization criterion of graph theory perspective fractional-order coupled discontinuous neural networks [J].
Pratap, A. ;
Raja, R. ;
Cao, Jinde ;
Alzabut, J. ;
Huang, Chuangxia .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[23]   Practical Finite-Time Synchronization of Fractional-Order Complex Dynamical Networks With Application to Lorenz's Circuit [J].
Wei, Chen ;
Wang, Xiaoping ;
Lai, Jingang ;
Zeng, Zhigang .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024,
[24]   Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control [J].
Li, Hong-Li ;
Hu, Cheng ;
Zhang, Long ;
Jiang, Haijun ;
Cao, Jinde .
FUZZY SETS AND SYSTEMS, 2022, 443 :50-69
[25]   Global Finite-Time Multi-Switching Synchronization of Externally Perturbed Chaotic Oscillators [J].
Ahmad, Israr ;
Shafiq, Muhammad ;
Shahzad, Mohammad .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (12) :5253-5278
[26]   Finite-time stabilization for fractional-order inertial neural networks with time-varying delays [J].
Aouiti, Chaouki ;
Cao, Jinde ;
Jallouli, Hediene ;
Huang, Chuangxia .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (01) :1-18
[27]   Finite-time Stability of Fractional-order Complex-valued Neural Networks with Time Delays [J].
Ding, Xiaoshuai ;
Cao, Jinde ;
Zhao, Xuan ;
Alsaadi, Fuad E. .
NEURAL PROCESSING LETTERS, 2017, 46 (02) :561-580
[28]   Adaptive synchronization of a class of fractional-order chaotic systems [J].
Ma Tie-Dong ;
Jiang Wei-Bo ;
Fu Jie ;
Chai Yi ;
Chen Li-Ping ;
Xue Fang-Zheng .
ACTA PHYSICA SINICA, 2012, 61 (16)
[29]   Synchronization of a Class of Fractional-Order Chaotic Neural Networks [J].
Chen, Liping ;
Qu, Jianfeng ;
Chai, Yi ;
Wu, Ranchao ;
Qi, Guoyuan .
ENTROPY, 2013, 15 (08) :3265-3276
[30]   A New Method on Synchronization of Fractional-Order Chaotic Systems [J].
Wang, Zhiliang ;
Zhang, Huaguang ;
Li, Yongfeng ;
Sun, Ning .
2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, :3557-+