Finite-time synchronization of fractional-order simplest two-component chaotic oscillators

被引:33
作者
Kengne, Romanic [1 ,2 ]
Tchitnga, Robert [1 ,2 ]
Mezatio, Anicet [1 ,2 ]
Fomethe, Anaclet [3 ]
Litak, Grzegorz [4 ,5 ]
机构
[1] Univ Dschang, Dept Phys, Fac Sci, Res Grp Expt & Appl Phys Sustainable Dev, POB 412, Dschang, Cameroon
[2] Univ Dschang, Dept Phys, Fac Sci, Lab Elect & Signal Proc, POB 67, Dschang, Cameroon
[3] Univ Dschang, Dept Phys, Fac Sci, Lab Mecan & Modelisat Syst,L2MS, POB 67, Dschang, Cameroon
[4] Lublin Univ Technol, Fac Mech Engn, Nadbystrzycka 36, PL-20618 Lublin, Poland
[5] AGH Univ Sci & Technol, Fac Mech Engn & Robot, Dept Proc Control, Mickiewicza 30, PL-30059 Krakow, Poland
关键词
SYSTEMS; DYNAMICS;
D O I
10.1140/epjb/e2017-70470-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The problem of finite-time synchronization of fractional-order simplest two-component chaotic oscillators operating at high frequency and application to digital cryptography is addressed. After the investigation of numerical chaotic behavior in the system, an adaptive feedback controller is designed to achieve the finite-time synchronization of two oscillators, based on the Lyapunov function. This controller could find application in many other fractional-order chaotic circuits. Applying synchronized fractional-order systems in digital cryptography, a well secured key system is obtained. Numerical simulations are given to illustrate and verify the analytic results.
引用
收藏
页数:10
相关论文
共 50 条
[11]   Finite-time synchronization of fractional-order complex networks via hybrid feedback control [J].
Li, Hong-Li ;
Cao, Jinde ;
Jiang, Haijun ;
Alsaedi, Ahmed .
NEUROCOMPUTING, 2018, 320 :69-75
[12]   Synchronization and FPGA realization of complex networks with fractional-order Liu chaotic oscillators [J].
Soriano-Sanchez, A. G. ;
Posadas-Castillo, C. ;
Platas-Garza, M. A. ;
Arellano-Delgado, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 :250-262
[13]   Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems based on Fractional Lyapunov Stability Theory [J].
Aghababa, Mohammad Pourmahmood .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (02)
[14]   Finite-time synchronization of tunnel-diode-based chaotic oscillators [J].
Louodop, Patrick ;
Fotsin, Hilaire ;
Kountchou, Michaux ;
Ngouonkadi, Elie B. Megam ;
Cerdeira, Hilda A. ;
Bowong, Samuel .
PHYSICAL REVIEW E, 2014, 89 (03)
[15]   Finite-time synchronization of fractional-order fuzzy Cohen-Grossberg neural networks with time delay [J].
Zhao, F. ;
Jian, J. .
IRANIAN JOURNAL OF FUZZY SYSTEMS, 2022, 19 (05) :47-61
[16]   Asymptotic and finite-time synchronization of fractional-order multiplex networks with time delays by adaptive and impulsive control [J].
Luo, Tianjiao ;
Wang, Qi ;
Jia, Qilong ;
Xu, Yao .
NEUROCOMPUTING, 2022, 493 :445-461
[17]   On Finite-Time Stability for Fractional-Order Neural Networks with Proportional Delays [J].
Xu, Changjin ;
Li, Peiluan .
NEURAL PROCESSING LETTERS, 2019, 50 (02) :1241-1256
[18]   A novel finite-time terminal observer of a fractional-order chaotic system with chaos entanglement function [J].
Khan, Ayub ;
Khan, Nasreen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) :640-656
[19]   Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller [J].
Fayazi, Ali .
EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 :333-339
[20]   Finite-Time Stability of Fractional-Order Neural Networks with Delay [J].
Wu Ran-Chao ;
Hei Xin-Dong ;
Chen Li-Ping .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (02) :189-193