Finite-time synchronization of fractional-order simplest two-component chaotic oscillators

被引:32
|
作者
Kengne, Romanic [1 ,2 ]
Tchitnga, Robert [1 ,2 ]
Mezatio, Anicet [1 ,2 ]
Fomethe, Anaclet [3 ]
Litak, Grzegorz [4 ,5 ]
机构
[1] Univ Dschang, Dept Phys, Fac Sci, Res Grp Expt & Appl Phys Sustainable Dev, POB 412, Dschang, Cameroon
[2] Univ Dschang, Dept Phys, Fac Sci, Lab Elect & Signal Proc, POB 67, Dschang, Cameroon
[3] Univ Dschang, Dept Phys, Fac Sci, Lab Mecan & Modelisat Syst,L2MS, POB 67, Dschang, Cameroon
[4] Lublin Univ Technol, Fac Mech Engn, Nadbystrzycka 36, PL-20618 Lublin, Poland
[5] AGH Univ Sci & Technol, Fac Mech Engn & Robot, Dept Proc Control, Mickiewicza 30, PL-30059 Krakow, Poland
来源
EUROPEAN PHYSICAL JOURNAL B | 2017年 / 90卷 / 05期
关键词
SYSTEMS; DYNAMICS;
D O I
10.1140/epjb/e2017-70470-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The problem of finite-time synchronization of fractional-order simplest two-component chaotic oscillators operating at high frequency and application to digital cryptography is addressed. After the investigation of numerical chaotic behavior in the system, an adaptive feedback controller is designed to achieve the finite-time synchronization of two oscillators, based on the Lyapunov function. This controller could find application in many other fractional-order chaotic circuits. Applying synchronized fractional-order systems in digital cryptography, a well secured key system is obtained. Numerical simulations are given to illustrate and verify the analytic results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Finite-time synchronization of fractional-order simplest two-component chaotic oscillators
    Romanic Kengne
    Robert Tchitnga
    Anicet Mezatio
    Anaclet Fomethe
    Grzegorz Litak
    The European Physical Journal B, 2017, 90
  • [2] Synchronization of two coupled fractional-order chaotic oscillators
    Gao, X
    Yu, JB
    CHAOS SOLITONS & FRACTALS, 2005, 26 (01) : 141 - 145
  • [3] Finite-time synchronization and parameter identification of fractional-order Lorenz chaotic system
    Shao, Keyong
    Zhou, Liyuan
    Guo, Ilaoxuan
    Xu, Zihui
    Chen, Ruoyu
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1120 - 1124
  • [4] Multi-scroll fractional-order chaotic system and finite-time synchronization
    Yan, Shaohui
    Wang, Qiyu
    Wang, Ertong
    Sun, Xi
    Song, Zhenlong
    PHYSICA SCRIPTA, 2022, 97 (02)
  • [5] Finite-time synchronization of fractional-order chaotic system based on hidden attractors
    Yan, Shaohui
    Zhang, Hanbing
    Jiang, Defeng
    Jiang, Jiawei
    Cui, Yu
    Zhang, Yuyan
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [6] Fuzzy synchronization of fractional-order chaotic systems using finite-time command filter
    Alassafi, Madini O.
    Ha, Shumin
    Alsaadi, Fawaz E.
    Ahmad, Adil M.
    Cao, Jinde
    INFORMATION SCIENCES, 2021, 579 : 325 - 346
  • [7] On the Lp synchronization and finite-time synchronization of fractional-order complex networks
    Zhang, Shuailei
    Liu, Xinge
    Ullah, Saeed
    Xu, Hongfu
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2025,
  • [8] Finite-time synchronization of fractional-order PMSM with unknown parameters
    Shao, Keyong
    Huang, Xinyu
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 6234 - 6238
  • [9] Finite-Time Synchronization of Memristive Neural Networks With Fractional-Order
    Yang, Shuai
    Yu, Juan
    Hu, Cheng
    Jiang, Haijun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (06): : 3739 - 3750
  • [10] Finite-time projective synchronization of fractional-order chaotic systems via soft variable structure control
    Shao, Keyong
    Guo, Haoxuan
    Han, Feng
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (01) : 369 - 376