On the origin of contact resistances in graphene devices fabricated by optical lithography

被引:19
作者
Chavarin, Carlos Alvarado [1 ,2 ]
Sagade, Abhay A. [3 ,4 ]
Neumaier, Daniel [3 ]
Bacher, Gerd [1 ,2 ]
Mertin, Wolfgang [1 ,2 ]
机构
[1] Univ Duisburg Essen, Werkstoffe Elektrotech, D-47057 Duisburg, Germany
[2] Univ Duisburg Essen, CENIDE, D-47057 Duisburg, Germany
[3] AMO GmbH, Adv Microelect Ctr Aachen AMICA, D-52074 Aachen, Germany
[4] Univ Cambridge, Dept Engn, Ctr Adv Photon & Elect, Cambridge CB3 0FA, England
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2016年 / 122卷 / 02期
关键词
PERFORMANCE; TRANSISTORS;
D O I
10.1007/s00339-015-9582-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The contact resistance is a key bottleneck limiting the performance of graphene-based electronic and optoelectronic devices. Using a combined approach of atomic force microscopy patterning, Kelvin probe force microscopy and micro-Raman mapping, we study the influence of optical lithography resists on the contact resistance in graphene devices. We find that devices fabricated by optical lithography show a significantly larger contact resistance compared to devices produced by electron beam lithography using polymethylmethacrylate as resist. This difference is attributed to a 3-4-nm-thick residual layer remaining in between the contact metal and the graphene after optical lithography.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 23 条
[1]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[2]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[3]   Doping dependence of the Raman peaks intensity of graphene close to the Dirac point [J].
Casiraghi, C. .
PHYSICAL REVIEW B, 2009, 80 (23)
[4]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[5]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[6]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[7]   Simplistic graphene transfer process and its impact on contact resistance [J].
Ghoneim, Mohamed T. ;
Smith, Casey E. ;
Hussain, Muhammad M. .
APPLIED PHYSICS LETTERS, 2013, 102 (18)
[8]   Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance [J].
Hsu, Allen ;
Wang, Han ;
Kim, Ki Kang ;
Kong, Jing ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (08) :1008-1010
[9]   Contact resistance in top-gated graphene field-effect transistors [J].
Huang, Bo-Chao ;
Zhang, Ming ;
Wang, Yanjie ;
Woo, Jason .
APPLIED PHYSICS LETTERS, 2011, 99 (03)
[10]   Atomic structure of graphene on SiO2 [J].
Ishigami, Masa ;
Chen, J. H. ;
Cullen, W. G. ;
Fuhrer, M. S. ;
Williams, E. D. .
NANO LETTERS, 2007, 7 (06) :1643-1648