PINK1 autophosphorylation is required for ubiquitin recognition

被引:92
|
作者
Rasool, Shafqat [1 ,2 ,3 ]
Soya, Naoto [2 ,4 ]
Truong, Luc [1 ,2 ]
Croteau, Nathalie [1 ,2 ]
Lukacs, Gergely L. [2 ,3 ,4 ]
Trempe, Jean-Francois [1 ,2 ]
机构
[1] McGill Univ, Dept Pharmacol & Therapeut, Montreal, PQ, Canada
[2] McGill Univ, Grp Rech Axe Struct Prot, Montreal, PQ, Canada
[3] McGill Univ, Dept Biochem, Montreal, PQ, Canada
[4] McGill Univ, Dept Physiol, Montreal, PQ, Canada
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Parkin; Parkinson; phosphorylation; PINK1; ubiquitin; PARKINSONS-DISEASE; PINK1-DEPENDENT PHOSPHORYLATION; ACTIVATION; MUTATIONS; MECHANISM; BINDING; IMPORT; RESOLUTION; MITOPHAGY; REVEALS;
D O I
10.15252/embr.201744981
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in PINK1 cause autosomal recessive Parkinson's disease (PD), a neurodegenerative movement disorder. PINK1 is a kinase that acts as a sensor of mitochondrial damage and initiates Parkin-mediated clearance of the damaged organelle. PINK1 phosphorylates Ser65 in both ubiquitin and the ubiquitin-like (Ubl) domain of Parkin, which stimulates its E3 ligase activity. Autophosphorylation of PINK1 is required for Parkin activation, but how this modulates the ubiquitin kinase activity is unclear. Here, we show that autophosphorylation of Tribolium castaneum PINK1 is required for substrate recognition. Using enzyme kinetics and NMR spectroscopy, we reveal that PINK1 binds the Parkin Ubl with a 10-fold higher affinity than ubiquitin via a conserved interface that is also implicated in RING1 and SH3 binding. The interaction requires phosphorylation at Ser205, an invariant PINK1 residue (Ser228 in human). Using mass spectrometry, we demonstrate that PINK1 rapidly autophosphorylates in trans at Ser205. Small-angle X-ray scattering and hydrogen-deuterium exchange experiments provide insights into the structure of the PINK1 catalytic domain. Our findings suggest that multiple PINK1 molecules autophosphorylate first prior to binding and phosphorylating ubiquitin and Parkin.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1
    Gladkova, Christina
    Schubert, Alexander F.
    Wagstaff, Jane L.
    Pruneda, Jonathan N.
    Freund, Stefan M. V.
    Komander, David
    EMBO JOURNAL, 2017, 36 (24) : 3555 - 3572
  • [2] Development and validation of a sensitive sandwich ELISA against human PINK1
    Baninameh, Zahra
    Watzlawik, Jens O.
    Bustillos, Bernardo A.
    Fiorino, Gabriella
    Yan, Tingxiang
    Lewicki, Szymon L.
    Zhang, Haonan
    Dickson, Dennis W.
    Siuda, Joanna
    Wszolek, Zbigniew K.
    Springer, Wolfdieter
    Fiesel, Fabienne C.
    AUTOPHAGY, 2025, : 1144 - 1159
  • [3] Systematic Functional Analysis of PINK1 and PRKN Coding Variants
    Broadway, Benjamin J.
    Boneski, Paige K.
    Bredenberg, Jenny M.
    Kolicheski, Ana
    Hou, Xu
    Soto-Beasley, Alexandra, I
    Ross, Owen A.
    Springer, Wolfdieter
    Fiesel, Fabienne C.
    CELLS, 2022, 11 (15)
  • [4] PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
    Okatsu, Kei
    Oka, Toshihiko
    Iguchi, Masahiro
    Imamura, Kenji
    Kosako, Hidetaka
    Tani, Naoki
    Kimura, Mayumi
    Go, Etsu
    Koyano, Fumika
    Funayama, Manabu
    Shiba-Fukushima, Kahori
    Sato, Shigeto
    Shimizu, Hideaki
    Fukunaga, Yuko
    Taniguchi, Hisaaki
    Komatsu, Masaaki
    Hattori, Nobutaka
    Mihara, Katsuyoshi
    Tanaka, Keiji
    Matsuda, Noriyuki
    NATURE COMMUNICATIONS, 2012, 3
  • [5] Substitution of PINK1 Gly411 modulates substrate receptivity and turnover
    Fiesel, Fabienne C.
    Fricova, Dominika
    Hayes, Caleb S.
    Coban, Mathew A.
    Hudec, Roman
    Bredenberg, Jenny M.
    Broadway, Benjamin J.
    Markham, Briana N.
    Yan, Tingxiang
    Boneski, Paige K.
    Fiorino, Gabriella
    Watzlawik, Jens O.
    Hou, Xu
    McCarty, Arthur M.
    Lewis-Tuffin, Laura J.
    Zhong, Jun
    Madden, Benjamin J.
    Ordureau, Alban
    An, Heeseon
    Puschmann, Andreas
    Wszolek, Zbigniew K.
    Ross, Owen A.
    Harper, J. Wade
    Caulfield, Thomas R.
    Springer, Wolfdieter
    AUTOPHAGY, 2023, 19 (06) : 1711 - 1732
  • [6] Structural insights into ubiquitin phosphorylation by PINK1
    Okatsu, Kei
    Sato, Yusuke
    Yamano, Koji
    Matsuda, Noriyuki
    Negishi, Lumi
    Takahashi, Akiko
    Yamagata, Atsushi
    Goto-Ito, Sakurako
    Mishima, Masaki
    Ito, Yutaka
    Oka, Toshihiko
    Tanaka, Keiji
    Fukai, Shuya
    SCIENTIFIC REPORTS, 2018, 8
  • [7] New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation
    Rasool, Shafqat
    Trempe, Jean-Francois
    CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2018, 53 (05) : 515 - 534
  • [8] PINK1: The guard of mitochondria
    Wang, Nan
    Zhu, Peining
    Huang, Renxuan
    Wang, Chong
    Sun, Liankun
    Lan, Beiwu
    He, Yichun
    Zhao, Hongyang
    Gao, Yufei
    LIFE SCIENCES, 2020, 259
  • [9] Mapping of a N-terminal α-helix domain required for human PINK1 stabilization, Serine228 autophosphorylation and activation in cells
    Kakade, Poonam
    Ojha, Hina
    Raimi, Olawale G.
    Shaw, Andrew
    Waddell, Andrew D.
    Ault, James R.
    Burel, Sophie
    Brockmann, Kathrin
    Kumar, Atul
    Ahangar, Mohd Syed
    Krysztofinska, Ewelina M.
    Macartney, Thomas
    Bayliss, Richard
    Fitzgerald, Julia C.
    Muqit, Miratul M. K.
    OPEN BIOLOGY, 2022, 12 (01)
  • [10] Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex
    Rasool, Shafqat
    Veyron, Simon
    Soya, Naoto
    Eldeeb, Mohamed A.
    Lukacs, Gergely L.
    Fon, Edward A.
    Trempe, Jean-Francois
    MOLECULAR CELL, 2022, 82 (01) : 44 - +