Asymmetric variation of a finite mass harmonic like oscillator

被引:14
作者
Asad, Jihad [1 ]
Mallick, P. [2 ]
Samei, M. E. [3 ]
Rath, B. [2 ]
Mohapatra, Prachiparava [2 ]
Shanak, Hussein [1 ]
Jarrar, Rabab [1 ]
机构
[1] Palestine Tech Univ Kadoorie PTUK, Coll Appl Sci, Dept Phys, Tulkarm, Palestine
[2] North Orissa Univ, Dept Phys, Baripada 757003, Odisha, India
[3] Bu Ali Sina Univ, Fac Basic Sci, Dept Math, Hamadan, Hamadan, Iran
关键词
Position dependent mass; Phase space; Classical; Quantum; Asymmetric dependence; POSITION-DEPENDENT MASS; SCHRODINGER-EQUATION; SUPERSYMMETRIC APPROACH; ASYMPTOTIC METHODS; SYSTEMS; INFORMATION;
D O I
10.1016/j.rinp.2020.103335
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Classical and quantum mechanical analysis have been carried out on harmonic like oscillator with asymmetric position dependent mass. Phase space analysis are performed both classically and quantum mechanically for a plausible understanding of the subject.
引用
收藏
页数:7
相关论文
共 45 条
[1]  
Biswas K., ARXIV191009287V1PHYS
[2]   Bohr Hamiltonian with a deformation-dependent mass term for the Kratzer potential [J].
Bonatsos, Dennis ;
Georgoudis, P. E. ;
Minkov, N. ;
Petrellis, D. ;
Quesne, C. .
PHYSICAL REVIEW C, 2013, 88 (03)
[3]   Lagrangian formalism for nonlinear second-order Riccati systems:: One-dimensional integrability and two-dimensional superintegrability -: art. no. 062703 [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (06)
[4]   One-dimensional model of a quantum nonlinear harmonic oscillator [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :285-293
[5]   A novel approach for constructing kinetic energy operators with position dependent mass [J].
Chargui, Y. ;
Dhahbi, A. ;
Trabelsi, A. .
RESULTS IN PHYSICS, 2019, 13
[6]   Families of stable solitons and excitations in the PT-symmetric nonlinear Schrodinger equations with position-dependent effective masses [J].
Chen, Yong ;
Yan, Zhenya ;
Mihalache, Dumitru ;
Malomed, Boris A. .
SCIENTIFIC REPORTS, 2017, 7
[7]   Displacement operator for quantum systems with position-dependent mass [J].
Costa Filho, R. N. ;
Almeida, M. P. ;
Farias, G. A. ;
Andrade, J. S., Jr. .
PHYSICAL REVIEW A, 2011, 84 (05)
[8]   On position-dependent mass harmonic oscillators [J].
Cruz y Cruz, S. ;
Negro, J. ;
Nieto, L. M. .
5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
[9]   Position-dependent mass oscillators and coherent states [J].
Cruz y Cruz, Sara ;
Rosas-Ortiz, Oscar .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (18)
[10]  
DESAAVEDRA FA, 1994, PHYS REV B, V50, P4248, DOI 10.1103/PhysRevB.50.4248