Navier-Stokes equations in the whole space with an eddy viscosity

被引:1
|
作者
Lewandowski, Roger [1 ,2 ]
机构
[1] Univ Rennes 1, IRMAR, UMR 6625, Campus Beaulieu, F-35042 Rennes, France
[2] INRIA, Fluminance Team, Campus Beaulieu, F-35042 Rennes, France
关键词
Navier-Stokes equations; Eddy viscosities; Turbulent solutions; LERAY-ALPHA MODEL; WEAK SOLUTIONS; LANS-ALPHA; OSCILLATIONS; FLUID; TERMS;
D O I
10.1016/j.jmaa.2019.05.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Navier-Stokes equations with an extra eddy viscosity term in the whole space R-3. We introduce a suitable regularized system for which we prove the existence of a regular solution defined for all time. We prove that when the regularizing parameter goes to zero, the solution of the regularized system converges to a turbulent solution of the initial system. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:698 / 742
页数:45
相关论文
共 50 条
  • [31] Besov Space Regularity Conditions for Weak Solutions of the Navier-Stokes Equations
    Farwig, Reinhard
    Sohr, Hermann
    Varnhorn, Werner
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (02) : 307 - 320
  • [32] Existence and decay of solutions in full space to Navier-Stokes equations with delays
    Niche, Cesar J.
    Planas, Gabriela
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) : 244 - 256
  • [33] ON THE IMPROVED REGULARITY CRITERION OF THE SOLUTIONS TO THE NAVIER-STOKES EQUATIONS
    Gala, Sadek
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 339 - 345
  • [34] On large-time energy concentration in solutions to the Navier-Stokes equations in the whole 3D space
    Skalak, Z.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (10): : 801 - 815
  • [35] On the Use of the Riesz Transforms to Determine the Pressure Term in the Incompressible Navier-Stokes Equations on the Whole Space
    alvarez-Samaniego, Borys
    alvarez-Samaniego, Wilson P.
    Fernandez-Dalgo, Pedro Gabriel
    ACTA APPLICANDAE MATHEMATICAE, 2021, 176 (01)
  • [36] On the Use of the Riesz Transforms to Determine the Pressure Term in the Incompressible Navier-Stokes Equations on the Whole Space
    Borys Álvarez-Samaniego
    Wilson P. Álvarez-Samaniego
    Pedro Gabriel Fernández-Dalgo
    Acta Applicandae Mathematicae, 2021, 176
  • [37] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [38] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [39] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [40] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304