Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network

被引:868
|
作者
Ahn, Namhyuk [1 ]
Kang, Byungkon [1 ]
Sohn, Kyung-Ah [1 ]
机构
[1] Ajou Univ, Dept Comp Engn, Suwon, South Korea
来源
COMPUTER VISION - ECCV 2018, PT X | 2018年 / 11214卷
基金
新加坡国家研究基金会;
关键词
Super-resolution; Deep convolutional neural network;
D O I
10.1007/978-3-030-01249-6_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning methods have been successfully applied to single-image super-resolution tasks. Despite their great performances, deep learning methods cannot be easily applied to realworld applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep network for image super-resolution. In detail, we design an architecture that implements a cascading mechanism upon a residual network. We also present variant models of the proposed cascading residual network to further improve efficiency. Our extensive experiments show that even with much fewer parameters and operations, our models achieve performance comparable to that of state-of-the-art methods.
引用
收藏
页码:256 / 272
页数:17
相关论文
共 50 条
  • [31] LIRSRN: A Lightweight Infrared Image Super-Resolution Network
    Lin, Chun-An
    Liu, Tsung-Jung
    Liu, Kuan-Hsien
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [32] Lightweight image super-resolution network using involution
    Jiu Liang
    Yu Zhang
    Jiangbo Xue
    Yu Zhang
    Yanda Hu
    Machine Vision and Applications, 2022, 33
  • [33] Lightweight subpixel sampling network for image super-resolution
    Zeng, Hongfei
    Wu, Qiang
    Zhang, Jin
    Xia, Haojie
    VISUAL COMPUTER, 2024, 40 (05) : 3781 - 3793
  • [34] Lightweight image super-resolution network using involution
    Liang, Jiu
    Zhang, Yu
    Xue, Jiangbo
    Hu, Yanda
    MACHINE VISION AND APPLICATIONS, 2022, 33 (05)
  • [35] An efficient lightweight network for single image super-resolution*
    Tang, Yinggan
    Zhang, Xiang
    Zhang, Xuguang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [36] A Lightweight Super-resolution Network with Skip-connections
    Wu X.
    Dai P.
    Lu S.
    Luo Z.
    Sun J.
    Yuan K.
    Current Medical Imaging, 2024, 20
  • [37] Lightweight Parallel Feedback Network for Image Super-Resolution
    Wang, Beibei
    Liu, Changjun
    Yan, Binyu
    Yang, Xiaomin
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3225 - 3243
  • [38] SRARDA: A lightweight adaptive residual dense attention generative adversarial network for image super-resolution
    Yang, Xin
    Hong, Chaming
    Xia, Tingyu
    Optik, 2024, 315
  • [39] CARN: Convolutional Anchored Regression Network for Fast and Accurate Single Image Super-Resolution
    Li, Yawei
    Agustsson, Eirikur
    Gu, Shuhang
    Timofte, Radu
    Van Gool, Luc
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 166 - 181
  • [40] SCRSR: An efficient recursive convolutional neural network for fast and accurate image super-resolution
    Lin, Daoyu
    Xu, Guangluan
    Xu, Wenjia
    Wang, Yang
    Sun, Xian
    Fu, Kun
    NEUROCOMPUTING, 2020, 398 : 399 - 407