Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment

被引:290
作者
Ibrahim, Idris [1 ]
Seo, Dong Han [1 ]
McDonagh, Andrew M. [2 ]
Shon, Ho Kyong [1 ]
Tijing, Leonard [1 ]
机构
[1] Univ Technol Sydney, Sch Civil & Environm Engn, Ctr Technol Water & Wastewater, POB 123,15 Broadway, Sydney, NSW 2007, Australia
[2] Univ Technol Sydney, Sch Math & Phys Sci, POB 123,15 Broadway, Sydney, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
Semiconductors; Photothermal materials; Solar steam generation; Water purification; Desalination; TRANSITION-METAL DICHALCOGENIDES; HIGHLY EFFICIENT; MOS2; NANOSHEETS; RECENT PROGRESS; ONE SUN; EVAPORATION; DRIVEN; MEMBRANE; ENERGY; GRAPHENE;
D O I
10.1016/j.desal.2020.114853
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Water scarcity issues around the world have renewed interest in the use of solar water evaporation as a means of providing fresh water. Advances in photothermal materials and thermal management, together with new interfacial system designs, have considerably improved the overall efficiency of solar steam generation (SSG) for desalination and wastewater treatment. Several classes of rationally-designed photothermal materials (PTMs) and nanostructures have enabled effective absorption of broad solar spectrum resulting in improved solar evaporation efficiency. Among several classes of PTMs, semiconductor-based PTMs have demonstrated great potential for SSG. In this review, we highlight the progress and prospects in SSG with emphasis on the use and evolution of advanced semiconductor materials for PTMs and their various designs and engineered architectures. Applications and future prospects for desalination and wastewater treatment are also discussed.
引用
收藏
页数:22
相关论文
共 147 条
[1]   Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer [J].
Alsbaiee, Alaaeddin ;
Smith, Brian J. ;
Xiao, Leilei ;
Ling, Yuhan ;
Helbling, Damian E. ;
Dichtel, William R. .
NATURE, 2016, 529 (7585) :190-U146
[2]   Functional materials in desalination: A review [J].
Anis, Shaheen Fatima ;
Hashaikeh, Raed ;
Hilal, Nidal .
DESALINATION, 2019, 468
[3]  
[Anonymous], 2010, WDPIN IDA 22 MS EXC
[4]  
[Anonymous], 1997, HLTH ENV SUST DEV 5
[5]   Carbonized Bamboos as Excellent 3D Solar Vapor-Generation Devices [J].
Bian, Yue ;
Du, Qiangion ;
Tang, Kun ;
Shen, Yang ;
Hao, Licai ;
Zhou, Dong ;
Wang, Xiaokun ;
Xu, Zhonghua ;
Zhang, Hulling ;
Zhao, Lijuan ;
Zhu, Shunming ;
Ye, Jiandong ;
Lu, Hai ;
Yang, Yi ;
Zhang, Rong ;
Zheng, Youdou ;
Gu, Shulin .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (04)
[6]   Possibility of combining ferroelectricity and Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) [J].
Bruyer, Emilie ;
Di Sante, Domenico ;
Barone, Paolo ;
Stroppa, Alessandro ;
Whangbo, Myung-Hwan ;
Picozzi, Silvia .
PHYSICAL REVIEW B, 2016, 94 (19)
[7]   Advances in solar evaporator materials for freshwater generation [J].
Cao, Sisi ;
Jiang, Qisheng ;
Wu, Xuanhao ;
Ghim, Deoukchen ;
Derami, Hamed Gholami ;
Chou, Ping-I. ;
Jun, Young-Shin ;
Singamaneni, Srikanth .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (42) :24092-24123
[8]   Melt Electrospun Reduced Tungsten Oxide/Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation [J].
Chala, Tolesa Fita ;
Wu, Chang-Mou ;
Chou, Min-Hui ;
Guo, Zhen-Lin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (34) :28955-28962
[9]   Three-Dimensional Porous Solar-Driven Interfacial Evaporator for High-Efficiency Steam Generation under Low Solar Flux [J].
Chang, Chao ;
Tao, Peng ;
Fu, Benwei ;
Xu, Jiale ;
Song, Chengyi ;
Wu, Jianbo ;
Shang, Wen ;
Deng, Tao .
ACS OMEGA, 2019, 4 (02) :3546-3555
[10]   Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun [J].
Chang, Yuhong ;
Wang, Zhenguang ;
Shi, Yu-e ;
Ma, Xicheng ;
Ma, Long ;
Zhang, Yuqiang ;
Zhan, Jinhua .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (23) :10939-10946