A note on generalized chromatic number and generalized girth

被引:5
作者
Bollobás, B
West, DB
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Cambridge, Cambridge CB2 1SB, England
[3] Univ Memphis, Memphis, TN 38152 USA
关键词
graph coloring; girth;
D O I
10.1016/S0012-365X(99)00165-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erdos proved that there are graphs with arbitrarily large girth and chromatic number. We study the extension of this for generalized chromatic numbers. (C) 2000 Elsevier Science B.V. All rights reserved. MSC Codes: 05C15; 05C65; 05C80.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 18 条
  • [1] Borowiecki M., 1991, ADV GRAPH THEORY, P41
  • [2] Borowiecki M., 1995, DISCUSS MATH GRAPH T, V15, P185
  • [3] BURR SA, 1990, C NUM, V70, P159
  • [4] ON CHROMATIC NUMBER OF GRAPHS AND SET-SYSTEMS
    ERDOS, P
    HAJNAL, A
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (1-2): : 61 - &
  • [5] Erdos P., 1959, CAN J MATH, V11, P34
  • [6] ERDOS P, 1973, INFINITE FINITE SETS, V2, P609
  • [7] Harary F., 1991, B I MATH ACAD SINICA, V19, P125
  • [8] Jacob H., 1983, ANN DISCRETE MATH, V17, P365
  • [9] JONES RP, 1974, P BRIT COMB C 1973 C, P83
  • [10] ON CHROMATIC NUMBER OF FINITE SET-SYSTEMS
    LOVASZ, L
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1968, 19 (1-2): : 59 - &